Brusco Michael, Steinley Douglas, Watts Ashley L
Department of Business Analytics, Information Systems, and Supply Chain, Florida State University.
Department of Psychological Sciences, University of Missouri.
Psychol Methods. 2024 Aug;29(4):704-722. doi: 10.1037/met0000509. Epub 2022 Jul 7.
Spectral clustering is a well-known method for clustering the vertices of an undirected network. Although its use in network psychometrics has been limited, spectral clustering has a close relationship to the commonly used walktrap algorithm. In this article, we report results from simulation experiments designed to evaluate the ability of spectral clustering and the walktrap algorithm to recover underlying cluster (or community) structure in networks. The salient findings include: (a) the recovery performance of the walktrap algorithm can be improved by using K-means clustering instead of hierarchical clustering; (b) -means and -median clustering led to comparable recovery performance when used to cluster vertices based on the eigenvectors of Laplacian matrices in spectral clustering; (c) spectral clustering using the unnormalized Laplacian matrix generally yielded inferior cluster recovery in comparison to the other methods; (d) when the correct number of clusters was provided for the methods, spectral clustering using the normalized Laplacian matrix led to better recovery than the walktrap algorithm; and (e) when the correct number of clusters was not provided, the walktrap algorithm using the modularity index was better than spectral clustering using the eigengap heuristic at determining the appropriate number of clusters. Overall, both the walktrap algorithm and spectral clustering of the normalized Laplacian matrix are effective for partitioning the vertices of undirected networks, with the latter performing better in most instances. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
谱聚类是一种用于对无向网络的顶点进行聚类的著名方法。尽管其在网络心理测量学中的应用有限,但谱聚类与常用的随机游走算法密切相关。在本文中,我们报告了模拟实验的结果,这些实验旨在评估谱聚类和随机游走算法恢复网络中潜在聚类(或社区)结构的能力。主要发现包括:(a)通过使用K均值聚类而非层次聚类,可以提高随机游走算法的恢复性能;(b)在谱聚类中,基于拉普拉斯矩阵的特征向量对顶点进行聚类时,K均值聚类和K中位数聚类产生了相当的恢复性能;(c)与其他方法相比,使用未归一化拉普拉斯矩阵的谱聚类通常产生较差的聚类恢复效果;(d)当为这些方法提供正确的聚类数量时,使用归一化拉普拉斯矩阵的谱聚类比随机游走算法产生更好的恢复效果;(e)当未提供正确的聚类数量时,使用模块度指数的随机游走算法在确定合适的聚类数量方面比使用特征间隙启发式的谱聚类更好。总体而言,随机游走算法和归一化拉普拉斯矩阵的谱聚类对于划分无向网络的顶点都是有效的,后者在大多数情况下表现更好。(PsycInfo数据库记录(c)2024美国心理学会,保留所有权利)