Suppr超能文献

基于并行CR树标记的分层超像素分割

Hierarchical Superpixel Segmentation by Parallel CRTrees Labeling.

作者信息

Yan Tingman, Huang Xiaolin, Zhao Qunfei

出版信息

IEEE Trans Image Process. 2022;31:4719-4732. doi: 10.1109/TIP.2022.3187563. Epub 2022 Jul 12.

Abstract

This paper proposes a hierarchical superpixel segmentation by representing an image as a hierarchy of 1-nearest neighbor (1-NN) graphs with pixels/superpixels denoting the graph vertices. The 1-NN graphs are built from the pixel/superpixel adjacent matrices to ensure connectivity. To determine the next-level superpixel hierarchy, inspired by FINCH clustering, the weakly connected components (WCCs) of the 1-NN graph are labeled as superpixels. We reveal that the WCCs of a 1-NN graph consist of a forest of cycle-root-trees (CRTrees). The forest-like structure inspires us to propose a two-stage parallel CRTrees labeling which first links the child vertices to the cycle-roots and then labels all the vertices by the cycle-roots. We also propose an inter-inner superpixel distance penalization and a Lab color lightness penalization base on the property that the distance of a CRTree decreases monotonically from the child to root vertices. Experiments show the parallel CRTrees labeling is several times faster than recent advanced sequential and parallel connected components labeling algorithms. The proposed hierarchical superpixel segmentation has comparable performance to the best performer ETPS (state-of-the-arts) on the BSDS500, NYUV2, and Fash datasets. At the same time, it can achieve 200FPS for 480P video streams.

摘要

本文提出了一种分层超像素分割方法,将图像表示为一个由像素/超像素作为图顶点的1-最近邻(1-NN)图层次结构。1-NN图由像素/超像素邻接矩阵构建,以确保连通性。为了确定下一级超像素层次结构,受FINCH聚类启发,将1-NN图的弱连通分量(WCC)标记为超像素。我们揭示了1-NN图的WCC由循环根树(CRTrees)森林组成。这种森林状结构启发我们提出一种两阶段并行CRTrees标记方法,该方法首先将子顶点链接到循环根,然后由循环根标记所有顶点。我们还基于CRTree的距离从子顶点到根顶点单调递减的特性,提出了一种内部-内部超像素距离惩罚和一种Lab颜色亮度惩罚。实验表明,并行CRTrees标记比最近先进的顺序和并行连通分量标记算法快几倍。所提出的分层超像素分割在BSDS500、NYUV2和Fash数据集上与最佳性能的ETPS(最先进的)具有可比的性能。同时,对于480P视频流,它可以达到200FPS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验