Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.)
Microbiotix, Inc., One Innovation Dr., Worcester, Massachusetts (M.M.B., S.L.W., S.T.N., X.D., S.C.C., L.R.M., S.M.K., Z.D.A., T.L.B.); Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland (J.S., M.I., J.G., S.A.D.); The Art of Discovery, SL, Biscay, Basque Country, Spain (M.B.J.-D., I.A.-B.); and Medicines for Malaria Venture, Geneva, Switzerland (R.T.J., J.N.B.).
Mol Pharmacol. 2022 Sep;102(3):172-182. doi: 10.1124/molpharm.122.000549. Epub 2022 Jul 7.
Human and animal malaria parasites increase their host erythrocyte permeability to a broad range of solutes as mediated by parasite-associated ion channels. Molecular and pharmacological studies have implicated an essential role in parasite nutrient acquisition, but inhibitors suitable for development of antimalarial drugs are missing. Here, we generated a potent and specific drug lead using , a virulent human pathogen, and derivatives of MBX-2366, a nanomolar affinity pyridazinone inhibitor from a high-throughput screen. As this screening hit lacks the bioavailability and stability needed for in vivo efficacy, we synthesized 315 derivatives to optimize drug-like properties, establish target specificity, and retain potent activity against the parasite-induced permeability. Using a robust, iterative pipeline, we generated MBX-4055, a derivative active against divergent human parasite strains. MBX-4055 has improved oral absorption with acceptable in vivo tolerability and pharmacokinetics. It also has no activity against a battery of 35 human channels and receptors and is refractory to acquired resistance during extended in vitro selection. Single-molecule and single-cell patch-clamp indicate direct action on the plasmodial surface anion channel, a channel linked to parasite-encoded RhopH proteins. These studies identify pyridazinones as novel and tractable antimalarial scaffolds with a defined mechanism of action. SIGNIFICANCE STATEMENT: Because antimalarial drugs are prone to evolving resistance in the virulent human pathogen, new therapies are needed. This study has now developed a novel drug-like series of pyridazinones that target an unexploited parasite anion channel on the host cell surface, display excellent in vitro and in vivo ADME properties, are refractory to acquired resistance, and demonstrate a well defined mechanism of action.
人类和动物疟原虫通过寄生虫相关的离子通道将其宿主的红细胞通透性增加到广泛的溶质范围内。分子和药理学研究表明,寄生虫的营养获取中存在重要作用,但缺乏适合开发抗疟药物的抑制剂。在这里,我们使用一种致命的人类病原体和 MBX-2366 的衍生物生成了一种有效的、特异性的药物先导物,MBX-2366 是一种高内涵筛选的纳摩尔亲和力哒嗪酮抑制剂。由于这种筛选命中缺乏体内疗效所需的生物利用度和稳定性,我们合成了 315 种衍生物来优化药物样特性、确定靶标特异性,并保留对寄生虫诱导的通透性的高效活性。通过一个稳健的、迭代的管道,我们生成了 MBX-4055,一种对不同的人类寄生虫株有效的衍生物。MBX-4055 具有改善的口服吸收性,可接受的体内耐受性和药代动力学。它对一系列 35 个人类通道和受体没有活性,并且在体外延长选择过程中对获得性耐药性有抗性。单分子和单细胞膜片钳表明,它直接作用于疟原虫表面阴离子通道,该通道与寄生虫编码的 RhopH 蛋白有关。这些研究确定哒嗪酮类化合物是一种新的、可处理的抗疟药物支架,具有明确的作用机制。
由于抗疟药物容易在致命的人类病原体中产生耐药性,因此需要新的疗法。本研究现在已经开发了一种新型的类药哒嗪酮系列,该系列靶向宿主细胞表面上未开发的寄生虫阴离子通道,具有出色的体外和体内 ADME 特性,对获得性耐药性有抗性,并且表现出明确的作用机制。