Department of Psychology, McGill University, 2001 McGill College, 7th Floor, Montreal, QC, H3A 1G1, Canada.
Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
Behav Res Methods. 2023 Jun;55(4):1942-1964. doi: 10.3758/s13428-022-01841-4. Epub 2022 Jul 7.
Multilevel models are used ubiquitously in the social and behavioral sciences and effect sizes are critical for contextualizing results. A general framework of R-squared effect size measures for multilevel models has only recently been developed. Rights and Sterba (2019) distinguished each source of explained variance for each possible kind of outcome variance. Though researchers have long desired a comprehensive and coherent approach to computing R-squared measures for multilevel models, the use of this framework has a steep learning curve. The purpose of this tutorial is to introduce and demonstrate using a new R package - r2mlm - that automates the intensive computations involved in implementing the framework and provides accompanying graphics to visualize all multilevel R-squared measures together. We use accessible illustrations with open data and code to demonstrate how to use and interpret the R package output.
多水平模型在社会和行为科学中被广泛应用,而效应大小对于将结果置于上下文中至关重要。最近才开发出一种用于多水平模型的 R 方效应量的通用框架。Rights 和 Sterba(2019 年)区分了每种可能的结果方差的每个来源的解释方差。尽管研究人员一直希望有一种全面而一致的方法来计算多水平模型的 R 方度量,但该框架的使用具有陡峭的学习曲线。本教程的目的是介绍并演示如何使用新的 R 包 - r2mlm - 来自动执行实施该框架所涉及的密集计算,并提供配套图形以一起可视化所有多水平 R 方度量。我们使用可访问的示例和开放数据和代码来说明如何使用和解释 R 包输出。