Kolesova Galina, Stepanov Alexander, Lebedeva Galina, Demin Oleg
InSysBio LLC, Nauchny proezd, 19, Moscow, Russia, 117246.
InSysBio UK Limited, 17-19 East London Street, Edinburgh, EH7 4ZD, UK.
J Pharmacokinet Pharmacodyn. 2022 Oct;49(5):511-524. doi: 10.1007/s10928-022-09814-y. Epub 2022 Jul 7.
In a standard situation, a quantitative systems pharmacology model describes a "reference patient," and the model parameters are fixed values allowing only the mean values to be described. However, the results of clinical trials include a description of variability in patients' responses to a drug, which is typically expressed in terms of conventional statistical parameters, such as standard deviations (SDs) from mean values. Therefore, in this study, we propose and compare four different approaches: (1) Monte Carlo Markov Chain (MCMC); (2) model fitting to Monte Carlo sample; (3) population of clones; (4) stochastically bounded selection to generate virtual patient populations based on experimentally measured mean data and SDs. We applied these approaches to generate virtual patient populations in the QSP model of erythropoiesis. According to the results of our research, stochastically bounded selection showed slightly better results than the other three methods as it allowed the description of any number of patients from clinical trials and could be applied in the case of complex models with a large number of variable parameters.
在标准情况下,定量系统药理学模型描述一个“参考患者”,模型参数为固定值,仅能描述平均值。然而,临床试验结果包含了患者对药物反应变异性的描述,这通常用常规统计参数来表示,比如相对于平均值的标准差(SD)。因此,在本研究中,我们提出并比较了四种不同方法:(1)蒙特卡洛马尔可夫链(MCMC);(2)对蒙特卡洛样本进行模型拟合;(3)克隆群体;(4)基于实验测量的均值数据和标准差进行随机有界选择以生成虚拟患者群体。我们将这些方法应用于红细胞生成的定量系统药理学(QSP)模型中以生成虚拟患者群体。根据我们的研究结果,随机有界选择显示出比其他三种方法稍好的结果,因为它允许描述来自临床试验的任意数量患者,并且可应用于具有大量可变参数的复杂模型情况。