Suppr超能文献

染色质动力学控制着表观遗传结构域的形成。

Chromatin dynamics controls epigenetic domain formation.

机构信息

Laboratoire de Biochimie Théorique, CNRS, Université de Paris, Paris, France.

Department of Chemistry, The University of Texas, Austin, Texas.

出版信息

Biophys J. 2022 Aug 2;121(15):2895-2905. doi: 10.1016/j.bpj.2022.07.001. Epub 2022 Jul 7.

Abstract

In multicellular organisms, nucleosomes carry epigenetic information that defines distinct patterns of gene expression, which are inherited over multiple generations. The enhanced capacity for information storage arises by nucleosome modifications, which are triggered by enzymes. Modified nucleosomes can transfer the mark to others that are in proximity by a positive-feedback (modification begets modification) mechanism. We created a generic polymer model, referred to as 3DSpreader, in which each bead, representing a nucleosome, stochastically switches between unmodified (U) and modified (M) states depending on the states of the neighbors. Modification begins at a specific nucleation site (NS) that is permanently in the M state, and could spread to other loci that is dictated by chromatin dynamics. Transfer of marks among the non-nucleation loci occurs stochastically as chromatin evolves in time. If the spreading rate is slower than the chromatin relaxation rate, which is biologically pertinent, then finite-sized domains form, driven by contacts between nucleosomes through a three-dimensional looping mechanism. Surprisingly, simulations based on the 3DSpreader model result in finite bounded domains that arise without the need for any boundary elements. Maintenance of spatially and temporally stable domains requires the presence of the NS, whose removal eliminates finite-sized modified domains. The theoretical predictions are in excellent agreement with experimental data for H3K9me3 spreading in mouse embryonic stem cells.

摘要

在多细胞生物中,核小体携带定义基因表达不同模式的表观遗传信息,这些模式在多个世代中遗传。通过由酶触发的核小体修饰,增强了信息存储的能力。修饰后的核小体可以通过正反馈(修饰引发修饰)机制将标记转移到附近的其他核小体。我们创建了一个通用的聚合物模型,称为 3DSpreader,其中每个珠子代表一个核小体,根据邻居的状态随机在未修饰(U)和修饰(M)状态之间切换。修饰从一个特定的成核位点(NS)开始,该位点始终处于 M 状态,并可以根据染色质动力学扩展到其他位点。随着时间的推移,在核小体进化过程中,标记在非成核位点之间的转移是随机发生的。如果扩展率低于生物学上相关的染色质弛豫率,那么在三维环化机制的作用下,通过核小体之间的接触形成有限大小的域。令人惊讶的是,基于 3DSpreader 模型的模拟导致形成有限的有界域,而无需任何边界元素。空间和时间稳定域的维持需要 NS 的存在,其去除消除了有限大小的修饰域。理论预测与 H3K9me3 在小鼠胚胎干细胞中的扩展的实验数据非常吻合。

相似文献

1
Chromatin dynamics controls epigenetic domain formation.染色质动力学控制着表观遗传结构域的形成。
Biophys J. 2022 Aug 2;121(15):2895-2905. doi: 10.1016/j.bpj.2022.07.001. Epub 2022 Jul 7.
3
Epigenomics in stress tolerance of plants under the climate change.植物在气候变化下的应激耐受中的表观基因组学。
Mol Biol Rep. 2023 Jul;50(7):6201-6216. doi: 10.1007/s11033-023-08539-6. Epub 2023 Jun 9.

引用本文的文献

6
Design principles of 3D epigenetic memory systems.三维表观遗传记忆系统的设计原则。
Science. 2023 Nov 17;382(6672):eadg3053. doi: 10.1126/science.adg3053.
8
A Review of Mathematical and Computational Methods in Cancer Dynamics.癌症动力学中的数学与计算方法综述
Front Oncol. 2022 Jul 25;12:850731. doi: 10.3389/fonc.2022.850731. eCollection 2022.
10
Generation of dynamic three-dimensional genome structure through phase separation of chromatin.通过染色质相分离生成动态三维基因组结构。
Proc Natl Acad Sci U S A. 2022 May 31;119(22):e2109838119. doi: 10.1073/pnas.2109838119. Epub 2022 May 26.

本文引用的文献

2
Physical modeling of the heritability and maintenance of epigenetic modifications.对遗传和表观遗传修饰的遗传性和维持进行物理建模。
Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20423-20429. doi: 10.1073/pnas.1920499117. Epub 2020 Aug 10.
7
Chromatin Higher-Order Folding: A Perspective with Linker DNA Angles.染色质高级折叠:以连接 DNA 角度看问题。
Biophys J. 2018 May 22;114(10):2290-2297. doi: 10.1016/j.bpj.2018.03.009. Epub 2018 Apr 6.
9
Shaping epigenetic memory via genomic bookmarking.通过基因组书签来塑造表观遗传记忆。
Nucleic Acids Res. 2018 Jan 9;46(1):83-93. doi: 10.1093/nar/gkx1200.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验