Suppr超能文献

染色质高级折叠:以连接 DNA 角度看问题。

Chromatin Higher-Order Folding: A Perspective with Linker DNA Angles.

机构信息

Department of Biochemistry & Molecular Biology, H171, Milton S. Hershey Medical Center, Penn State University College of Medicine, Hershey, Pennsylvania.

出版信息

Biophys J. 2018 May 22;114(10):2290-2297. doi: 10.1016/j.bpj.2018.03.009. Epub 2018 Apr 6.

Abstract

The mechanism by which the "beads-on-a-string" nucleosome chain folds into various higher-order chromatin structures in eukaryotic cell nuclei is still poorly understood. The various models depicting higher-order chromatin as regular helical fibers and the very opposite "polymer melt" theory imply that interactions between nucleosome "beads" make the main contribution to the chromatin compaction. Other models in which the geometry of linker DNA "strings" entering and exiting the nucleosome define the three-dimensional structure predict that small changes in the linker DNA configuration may strongly affect nucleosome chain folding and chromatin higher-order structure. Among those studies, the cross-disciplinary approach pioneered by Jörg Langowski that combines computational modeling with biophysical and biochemical experiments was most instrumental for understanding chromatin higher-order structure in vitro. Strikingly, many recent studies, including genome-wide nucleosome interaction mapping and chromatin imaging, show an excellent agreement with the results of three-dimensional computational modeling based on the primary role of linker DNA geometry in chromatin compaction. This perspective relates nucleosome array models with experimental studies of nucleosome array folding in vitro and in situ. I argue that linker DNA configuration plays a key role in determining nucleosome chain flexibility, topology, and propensity for self-association, thus providing new implications for regulation of chromatin accessibility to DNA binding factors and RNA transcription machinery as well as long-range communications between distant genomic sites.

摘要

真核细胞核中“珠串”核小体链折叠成各种高级染色质结构的机制仍知之甚少。各种将高级染色质描绘成规则螺旋纤维的模型,以及完全相反的“聚合物熔解”理论,都表明核小体“珠子”之间的相互作用是染色质紧缩的主要贡献者。其他模型中,进入和离开核小体的连接 DNA“字符串”的几何形状定义了三维结构,预测连接 DNA 构象的微小变化可能会强烈影响核小体链折叠和染色质高级结构。在这些研究中,Jörg Langowski 开创的跨学科方法最为重要,该方法将计算建模与生物物理和生化实验相结合,用于理解体外的高级染色质结构。引人注目的是,许多最近的研究,包括全基因组核小体相互作用图谱和染色质成像,与基于连接 DNA 几何在染色质紧缩中的主要作用的三维计算建模结果非常吻合。这种观点将核小体阵列模型与体外和原位核小体阵列折叠的实验研究联系起来。我认为,连接 DNA 的构象在决定核小体链的柔韧性、拓扑结构和自缔合倾向方面起着关键作用,从而为调节染色质对 DNA 结合因子和 RNA 转录机制的可及性以及远距离基因组位点之间的长程通讯提供了新的启示。

相似文献

1
Chromatin Higher-Order Folding: A Perspective with Linker DNA Angles.染色质高级折叠:以连接 DNA 角度看问题。
Biophys J. 2018 May 22;114(10):2290-2297. doi: 10.1016/j.bpj.2018.03.009. Epub 2018 Apr 6.
9
Nucleosome spacing and chromatin higher-order folding.核小体间距和染色质高级折叠。
Nucleus. 2012 Nov-Dec;3(6):493-9. doi: 10.4161/nucl.22168. Epub 2012 Sep 18.

引用本文的文献

1
Beyond the mono-nucleosome.超越单核小体。
Biochem Soc Trans. 2025 Jan 31;53(1):BCJ20240452. doi: 10.1042/BST20230721.
3
Hexasomal particles: consequence or also consequential?六联体颗粒:结果还是也有因果关系?
Curr Opin Genet Dev. 2024 Apr;85:102163. doi: 10.1016/j.gde.2024.102163. Epub 2024 Feb 26.
9
Chromatin dynamics controls epigenetic domain formation.染色质动力学控制着表观遗传结构域的形成。
Biophys J. 2022 Aug 2;121(15):2895-2905. doi: 10.1016/j.bpj.2022.07.001. Epub 2022 Jul 7.
10
Visualizing Conformational Ensembles of the Nucleosome by NMR.通过核磁共振可视化核小体的构象集合
ACS Chem Biol. 2022 Mar 18;17(3):495-502. doi: 10.1021/acschembio.1c00954. Epub 2022 Feb 23.

本文引用的文献

1
DNA topology in chromatin is defined by nucleosome spacing.染色质中的 DNA 拓扑结构由核小体间隔定义。
Sci Adv. 2017 Oct 27;3(10):e1700957. doi: 10.1126/sciadv.1700957. eCollection 2017 Oct.
2
Cohesin Loss Eliminates All Loop Domains.黏连蛋白缺失消除了所有的环状结构域。
Cell. 2017 Oct 5;171(2):305-320.e24. doi: 10.1016/j.cell.2017.09.026.
4
The 4D nucleome project.4D核基因组计划。
Nature. 2017 Sep 13;549(7671):219-226. doi: 10.1038/nature23884.
8
Molecular biology: A liquid reservoir for silent chromatin.分子生物学:沉默染色质的液体储存库。
Nature. 2017 Jul 13;547(7662):168-170. doi: 10.1038/nature23089. Epub 2017 Jun 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验