Correa Santiago, Grosskopf Abigail K, Klich John H, Hernandez Hector Lopez, Appel Eric A
Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
These authors contributed equally.
Matter. 2022 Jun 1;5(6):1816-1838. doi: 10.1016/j.matt.2022.03.001. Epub 2022 Mar 21.
Directing biological functions is at the heart of next-generation biomedical initiatives in tissue and immuno-engineering. However, the ambitious goal of engineering complex biological networks requires the ability to precisely perturb specific signaling pathways at distinct times and places. Using lipid nanotechnology and the principles of supramolecular self-assembly, we developed an injectable liposomal nanocomposite hydrogel platform to precisely control the release of multiple protein drugs. By integrating modular lipid nanotechnology into a hydrogel, we introduced multiple mechanisms of release based on liposome surface chemistry. To validate the utility of this system for multi-protein delivery, we demonstrated synchronized, sustained, and localized release of IgG antibody and IL-12 cytokine , despite the significant size differences between these two proteins. Overall, liposomal hydrogels are a highly modular platform technology with the ability the mediate orthogonal modes of protein release and the potential to precisely coordinate biological cues both and .
引导生物功能是组织和免疫工程中下一代生物医学计划的核心。然而,构建复杂生物网络这一宏伟目标需要有能力在不同的时间和地点精确干扰特定的信号通路。利用脂质纳米技术和超分子自组装原理,我们开发了一种可注射的脂质体纳米复合水凝胶平台,以精确控制多种蛋白质药物的释放。通过将模块化脂质纳米技术整合到水凝胶中,我们基于脂质体表面化学引入了多种释放机制。为了验证该系统用于多蛋白递送的效用,我们证明了IgG抗体和IL-12细胞因子的同步、持续和局部释放,尽管这两种蛋白质的大小差异很大。总体而言,脂质体水凝胶是一种高度模块化的平台技术,能够介导蛋白质释放的正交模式,并有可能精确协调体内外的生物信号。