Suppr超能文献

解析大型数据集的单细胞拷贝数分析。

Resolving single-cell copy number profiling for large datasets.

机构信息

Department of Computer Science at City University of Hong Kong.

School of Software, Northwestern Polytechnical University.

出版信息

Brief Bioinform. 2022 Jul 18;23(4). doi: 10.1093/bib/bbac264.

Abstract

The advances of single-cell DNA sequencing (scDNA-seq) enable us to characterize the genetic heterogeneity of cancer cells. However, the high noise and low coverage of scDNA-seq impede the estimation of copy number variations (CNVs). In addition, existing tools suffer from intensive execution time and often fail on large datasets. Here, we propose SeCNV, an efficient method that leverages structural entropy, to profile the copy numbers. SeCNV adopts a local Gaussian kernel to construct a matrix, depth congruent map (DCM), capturing the similarities between any two bins along the genome. Then, SeCNV partitions the genome into segments by minimizing the structural entropy from the DCM. With the partition, SeCNV estimates the copy numbers within each segment for cells. We simulate nine datasets with various breakpoint distributions and amplitudes of noise to benchmark SeCNV. SeCNV achieves a robust performance, i.e. the F1-scores are higher than 0.95 for breakpoint detections, significantly outperforming state-of-the-art methods. SeCNV successfully processes large datasets (>50 000 cells) within 4 min, while other tools fail to finish within the time limit, i.e. 120 h. We apply SeCNV to single-nucleus sequencing datasets from two breast cancer patients and acoustic cell tagmentation sequencing datasets from eight breast cancer patients. SeCNV successfully reproduces the distinct subclones and infers tumor heterogeneity. SeCNV is available at https://github.com/deepomicslab/SeCNV.

摘要

单细胞 DNA 测序(scDNA-seq)的进步使我们能够描绘癌细胞的遗传异质性。然而,scDNA-seq 的高噪声和低覆盖率阻碍了拷贝数变异(CNVs)的估计。此外,现有的工具执行时间长,并且经常在大型数据集上失败。在这里,我们提出了 SeCNV,一种利用结构熵来分析拷贝数的有效方法。SeCNV 采用局部高斯核来构建矩阵,深度一致映射(DCM),捕捉基因组中任意两个 bin 之间的相似性。然后,SeCNV 通过最小化 DCM 的结构熵将基因组划分为片段。通过分区,SeCNV 为每个细胞估计每个片段内的拷贝数。我们模拟了九个具有不同断点分布和噪声幅度的数据集,以对 SeCNV 进行基准测试。SeCNV 实现了稳健的性能,即断点检测的 F1 分数高于 0.95,明显优于最先进的方法。SeCNV 能够在 4 分钟内处理超过 50000 个细胞的大型数据集,而其他工具在时间限制内(即 120 小时)无法完成。我们将 SeCNV 应用于来自两名乳腺癌患者的单细胞测序数据集和来自八名乳腺癌患者的声学细胞标记测序数据集。SeCNV 成功地重现了不同的亚克隆,并推断了肿瘤异质性。SeCNV 可在 https://github.com/deepomicslab/SeCNV 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验