Suppr超能文献

人工智能在植物修复领域应用的新策略。

New strategies on the application of artificial intelligence in the field of phytoremediation.

机构信息

Department of Civil Engineering, KIIT University, Bhubaneswar, Odisha, India.

Department of Bioresource Engineering, McGill University, Montreal, Canada.

出版信息

Int J Phytoremediation. 2023;25(4):505-523. doi: 10.1080/15226514.2022.2090500. Epub 2022 Jul 8.

Abstract

Artificial Intelligence (AI) is expected to play a crucial role in the field of phytoremediation and its effective management in monitoring the growth of the plant in different contaminated soils and their phenotype characteristic such as the biomass of plants. This review focuses on recent applications of various AI techniques and remote sensing approaches in the field of phytoremediation to monitor plant growth with relevant morphological parameters using novel sensors, cameras, and associated modern technologies. Novel sensing and various measurement techniques are highlighted. Input parameters are used to develop futuristic models utilizing AI and statistical approaches. Additionally, a brief discussion has been presented on the use of AI techniques to detect metal hyperaccumulation in all parts of the plant, carbon capture, and sequestration along with its effect on food production to ensure food safety and security. This article highlights the application, limitation, and future perspectives of phytoremediation in monitoring the mobility, bioavailability, seasonal variation, effect of temperature on plant growth, and plant response to the heavy metals in soil by using the AI technique. Suggestions are made for future research in this area to analyze which would help to enhance plant growth and improve food security in long run.

摘要

人工智能(AI)有望在植物修复领域发挥关键作用,并有效管理其在监测不同污染土壤中植物生长及其表型特征(如植物生物量)方面的应用。本综述重点介绍了最近在植物修复领域应用各种 AI 技术和遥感方法,利用新型传感器、摄像机和相关现代技术监测植物生长及其相关形态参数。强调了新型传感和各种测量技术。输入参数用于利用 AI 和统计方法开发未来模型。此外,还简要讨论了利用 AI 技术检测植物各部位金属超积累、碳捕获和封存及其对粮食生产的影响,以确保粮食安全。本文强调了在利用 AI 技术监测重金属在土壤中的迁移性、生物可利用性、季节性变化、温度对植物生长的影响以及植物对重金属的反应方面,植物修复在监测方面的应用、局限性和未来前景。为该领域的未来研究提出了建议,以分析有助于提高植物生长和长期提高粮食安全的因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验