Suppr超能文献

一种用于肉类物种定量分析的综合糖组学方法。

An Integrative Glycomic Approach for Quantitative Meat Species Profiling.

作者信息

Chia Sean, Teo Gavin, Tay Shi Jie, Loo Larry Sai Weng, Wan Corrine, Sim Lyn Chiin, Yu Hanry, Walsh Ian, Pang Kuin Tian

机构信息

Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), Singapore 138668, Singapore.

Institute of Bioengineering and Bioimaging, Agency for Science Technology and Research (A*STAR), Singapore 138669, Singapore.

出版信息

Foods. 2022 Jun 30;11(13):1952. doi: 10.3390/foods11131952.

Abstract

It is estimated that food fraud, where meat from different species is deceitfully labelled or contaminated, has cost the global food industry around USD 6.2 to USD 40 billion annually. To overcome this problem, novel and robust quantitative methods are needed to accurately characterise and profile meat samples. In this study, we use a glycomic approach for the profiling of meat from different species. This involves an O-glycan analysis using LC-MS qTOF, and an N-glycan analysis using a high-resolution non-targeted ultra-performance liquid chromatography-fluorescence-mass spectrometry (UPLC-FLR-MS) on chicken, pork, and beef meat samples. Our integrated glycomic approach reveals the distinct glycan profile of chicken, pork, and beef samples; glycosylation attributes such as fucosylation, sialylation, galactosylation, high mannose, α-galactose, Neu5Gc, and Neu5Ac are significantly different between meat from different species. The multi-attribute data consisting of the abundance of each O-glycan and N-glycan structure allows a clear separation between meat from different species through principal component analysis. Altogether, we have successfully demonstrated the use of a glycomics-based workflow to extract multi-attribute data from O-glycan and N-glycan analysis for meat profiling. This established glycoanalytical methodology could be extended to other high-value biotechnology industries for product authentication.

摘要

据估计,食品欺诈行为,即不同物种的肉类被虚假标注或污染,每年给全球食品行业造成约62亿美元至400亿美元的损失。为克服这一问题,需要新颖且强大的定量方法来准确表征和剖析肉类样本。在本研究中,我们采用糖组学方法对不同物种的肉类进行剖析。这包括使用液相色谱 - 串联飞行时间质谱(LC-MS qTOF)进行O-聚糖分析,以及使用高分辨率非靶向超高效液相色谱 - 荧光 - 质谱联用仪(UPLC-FLR-MS)对鸡肉、猪肉和牛肉样本进行N-聚糖分析。我们的综合糖组学方法揭示了鸡肉、猪肉和牛肉样本独特的聚糖谱;不同物种肉类之间的岩藻糖基化、唾液酸化、半乳糖基化、高甘露糖、α-半乳糖、Neu5Gc和Neu5Ac等糖基化属性存在显著差异。由每种O-聚糖和N-聚糖结构的丰度组成的多属性数据,通过主成分分析能够清晰区分不同物种的肉类。总之,我们成功展示了基于糖组学的工作流程,可从O-聚糖和N-聚糖分析中提取多属性数据用于肉类剖析。这种既定的糖分析方法可扩展到其他高价值生物技术行业用于产品认证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdc3/9265272/bfe5b6dabcba/foods-11-01952-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验