Suppr超能文献

ProB-Site:使用局部特征预测蛋白质结合位点。

ProB-Site: Protein Binding Site Prediction Using Local Features.

机构信息

Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea.

School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea.

出版信息

Cells. 2022 Jul 5;11(13):2117. doi: 10.3390/cells11132117.

Abstract

Protein-protein interactions (PPIs) are responsible for various essential biological processes. This information can help develop a new drug against diseases. Various experimental methods have been employed for this purpose; however, their application is limited by their cost and time consumption. Alternatively, computational methods are considered viable means to achieve this crucial task. Various techniques have been explored in the literature using the sequential information of amino acids in a protein sequence, including machine learning and deep learning techniques. The current efficiency of interaction-site prediction still has growth potential. Hence, a deep neural network-based model, ProB-site, is proposed. ProB-site utilizes sequential information of a protein to predict its binding sites. The proposed model uses evolutionary information and predicted structural information extracted from sequential information of proteins, generating three unique feature sets for every amino acid in a protein sequence. Then, these feature sets are fed to their respective sub-CNN architecture to acquire complex features. Finally, the acquired features are concatenated and classified using fully connected layers. This methodology performed better than state-of-the-art techniques because of the selection of the best features and contemplation of local information of each amino acid.

摘要

蛋白质-蛋白质相互作用(PPIs)负责各种基本的生物过程。这些信息可以帮助开发针对疾病的新药。为此已经采用了各种实验方法;但是,它们的应用受到成本和时间消耗的限制。或者,可以考虑使用计算方法来完成这项关键任务。文献中已经探索了使用蛋白质序列中氨基酸的顺序信息的各种技术,包括机器学习和深度学习技术。目前,交互位点预测的效率仍有增长的空间。因此,提出了一种基于深度神经网络的模型 ProB-site。ProB-site 利用蛋白质的顺序信息来预测其结合位点。所提出的模型使用从蛋白质的顺序信息中提取的进化信息和预测的结构信息,为蛋白质序列中的每个氨基酸生成三个独特的特征集。然后,将这些特征集输入到各自的子 CNN 架构中以获取复杂的特征。最后,使用全连接层对获取的特征进行连接和分类。由于选择了最佳特征并考虑了每个氨基酸的局部信息,因此该方法的性能优于最新技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae9c/9266162/d97b0b2c6bbf/cells-11-02117-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验