Suppr超能文献

BrainSeg-Net:通过增强型编码器-解码器网络进行脑肿瘤磁共振图像分割

BrainSeg-Net: Brain Tumor MR Image Segmentation via Enhanced Encoder-Decoder Network.

作者信息

Rehman Mobeen Ur, Cho SeungBin, Kim Jeehong, Chong Kil To

机构信息

Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea.

Department of Avionics Engineering, Air University, Islamabad 44000, Pakistan.

出版信息

Diagnostics (Basel). 2021 Jan 25;11(2):169. doi: 10.3390/diagnostics11020169.

Abstract

Efficient segmentation of Magnetic Resonance (MR) brain tumor images is of the utmost value for the diagnosis of tumor region. In recent years, advancement in the field of neural networks has been used to refine the segmentation performance of brain tumor sub-regions. The brain tumor segmentation has proven to be a complicated task even for neural networks, due to the small-scale tumor regions. These small-scale tumor regions are unable to be identified, the reason being their tiny size and the huge difference between area occupancy by different tumor classes. In previous state-of-the-art neural network models, the biggest problem was that the location information along with spatial details gets lost in deeper layers. To address these problems, we have proposed an encoder-decoder based model named BrainSeg-Net. The Feature Enhancer (FE) block is incorporated into the BrainSeg-Net architecture which extracts the middle-level features from low-level features from the shallow layers and shares them with the dense layers. This feature aggregation helps to achieve better performance of tumor identification. To address the problem associated with imbalance class, we have used a custom-designed loss function. For evaluation of BrainSeg-Net architecture, three benchmark datasets are utilized: BraTS2017, BraTS 2018, and BraTS 2019. Segmentation of Enhancing Core (EC), Whole Tumor (WT), and Tumor Core (TC) is carried out. The proposed architecture have exhibited good improvement when compared with existing baseline and state-of-the-art techniques. The MR brain tumor segmentation by BrainSeg-Net uses enhanced location and spatial features, which performs better than the existing plethora of brain MR image segmentation approaches.

摘要

磁共振(MR)脑肿瘤图像的高效分割对于肿瘤区域的诊断具有至关重要的价值。近年来,神经网络领域的进展已被用于提升脑肿瘤子区域的分割性能。即使对于神经网络而言,脑肿瘤分割也已被证明是一项复杂的任务,原因在于肿瘤区域规模较小。这些小规模肿瘤区域难以被识别,原因是其尺寸微小以及不同肿瘤类别所占面积差异巨大。在先前的先进神经网络模型中,最大的问题是位置信息以及空间细节在更深层中丢失。为解决这些问题,我们提出了一种基于编码器 - 解码器的模型,名为BrainSeg - Net。特征增强器(FE)模块被纳入BrainSeg - Net架构,该模块从浅层的低级特征中提取中级特征,并将其与密集层共享。这种特征聚合有助于实现更好的肿瘤识别性能。为解决与类别不平衡相关的问题,我们使用了一种定制设计的损失函数。为评估BrainSeg - Net架构,使用了三个基准数据集:BraTS2017、BraTS 2018和BraTS 2019。对强化核心(EC)、全肿瘤(WT)和肿瘤核心(TC)进行了分割。与现有的基线和先进技术相比,所提出的架构展现出了良好的改进。BrainSeg - Net对MR脑肿瘤的分割使用了增强的位置和空间特征,其性能优于现有的大量脑MR图像分割方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf44/7911842/2fca971452b8/diagnostics-11-00169-g001.jpg

相似文献

1
BrainSeg-Net: Brain Tumor MR Image Segmentation via Enhanced Encoder-Decoder Network.
Diagnostics (Basel). 2021 Jan 25;11(2):169. doi: 10.3390/diagnostics11020169.
3
Dense gate network for biomedical image segmentation.
Int J Comput Assist Radiol Surg. 2020 Aug;15(8):1247-1255. doi: 10.1007/s11548-020-02138-7. Epub 2020 Apr 8.
4
RAAGR2-Net: A brain tumor segmentation network using parallel processing of multiple spatial frames.
Comput Biol Med. 2023 Jan;152:106426. doi: 10.1016/j.compbiomed.2022.106426. Epub 2022 Dec 20.
6
DRRNet: Dense Residual Refine Networks for Automatic Brain Tumor Segmentation.
J Med Syst. 2019 Jun 8;43(7):221. doi: 10.1007/s10916-019-1358-6.
8
T-Net: Nested encoder-decoder architecture for the main vessel segmentation in coronary angiography.
Neural Netw. 2020 Aug;128:216-233. doi: 10.1016/j.neunet.2020.05.002. Epub 2020 May 19.
9
3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images.
IEEE Trans Med Imaging. 2020 Feb;39(2):447-457. doi: 10.1109/TMI.2019.2928056. Epub 2019 Jul 11.
10
ADR-Net: Context extraction network based on M-Net for medical image segmentation.
Med Phys. 2020 Sep;47(9):4254-4264. doi: 10.1002/mp.14364. Epub 2020 Aug 2.

引用本文的文献

2
mResU-Net: multi-scale residual U-Net-based brain tumor segmentation from multimodal MRI.
Med Biol Eng Comput. 2024 Mar;62(3):641-651. doi: 10.1007/s11517-023-02965-1. Epub 2023 Nov 19.
5
Self-Enhanced Mixed Attention Network for Three-Modal Images Few-Shot Semantic Segmentation.
Sensors (Basel). 2023 Jul 22;23(14):6612. doi: 10.3390/s23146612.
7
Feature interaction network based on hierarchical decoupled convolution for 3D medical image segmentation.
PLoS One. 2023 Jul 13;18(7):e0288658. doi: 10.1371/journal.pone.0288658. eCollection 2023.
8
ETISTP: An Enhanced Model for Brain Tumor Identification and Survival Time Prediction.
Diagnostics (Basel). 2023 Apr 18;13(8):1456. doi: 10.3390/diagnostics13081456.
9
Attention-Based Graph Neural Network for Molecular Solubility Prediction.
ACS Omega. 2023 Jan 12;8(3):3236-3244. doi: 10.1021/acsomega.2c06702. eCollection 2023 Jan 24.
10
Smart Visualization of Medical Images as a Tool in the Function of Education in Neuroradiology.
Diagnostics (Basel). 2022 Dec 17;12(12):3208. doi: 10.3390/diagnostics12123208.

本文引用的文献

1
DNA6mA-MINT: DNA-6mA Modification Identification Neural Tool.
Genes (Basel). 2020 Aug 5;11(8):898. doi: 10.3390/genes11080898.
2
MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation.
Neural Netw. 2020 Jan;121:74-87. doi: 10.1016/j.neunet.2019.08.025. Epub 2019 Sep 4.
3
A novel end-to-end brain tumor segmentation method using improved fully convolutional networks.
Comput Biol Med. 2019 May;108:150-160. doi: 10.1016/j.compbiomed.2019.03.014. Epub 2019 Mar 18.
4
Attention gated networks: Learning to leverage salient regions in medical images.
Med Image Anal. 2019 Apr;53:197-207. doi: 10.1016/j.media.2019.01.012. Epub 2019 Feb 5.
5
A deep learning model integrating FCNNs and CRFs for brain tumor segmentation.
Med Image Anal. 2018 Jan;43:98-111. doi: 10.1016/j.media.2017.10.002. Epub 2017 Oct 5.
6
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation.
Med Image Anal. 2017 Feb;36:61-78. doi: 10.1016/j.media.2016.10.004. Epub 2016 Oct 29.
7
Brain tumor segmentation with Deep Neural Networks.
Med Image Anal. 2017 Jan;35:18-31. doi: 10.1016/j.media.2016.05.004. Epub 2016 May 19.
8
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.
IEEE Trans Med Imaging. 2016 May;35(5):1240-1251. doi: 10.1109/TMI.2016.2538465. Epub 2016 Mar 4.
9
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.
10
A multilayer grow-or-go model for GBM: effects of invasive cells and anti-angiogenesis on growth.
Bull Math Biol. 2014 Sep;76(9):2306-33. doi: 10.1007/s11538-014-0007-y. Epub 2014 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验