Suppr超能文献

基于机器学习方法的细菌基混凝土自愈性能评估

Self-Healing Performance Assessment of Bacterial-Based Concrete Using Machine Learning Approaches.

作者信息

Huang Xu, Sresakoolchai Jessada, Qin Xia, Ho Yiu Fan, Kaewunruen Sakdirat

机构信息

Laboratory for Track Engineering and Operations for Future Uncertainties (TOFU Lab), School of Engineering, University of Birmingham, Birmingham B152TT, UK.

Department of Civil Engineering, School of Engineering, University of Birmingham, Birmingham B152TT, UK.

出版信息

Materials (Basel). 2022 Jun 23;15(13):4436. doi: 10.3390/ma15134436.

Abstract

Bacterial-based self-healing concrete (BSHC) is a well-known healing technology which has been investigated for a few decades for its excellent crack healing capacity. Nevertheless, considered as costly and time-consuming, the healing performance (HP) of concrete with various types of bacteria can be designed and evaluated only in laboratory environments. Employing machine learning (ML) models for predicting the HP of BSHC is inspired by practical applications using concrete mechanical properties. The HP of BSHC can be predicted to save the time and cost of laboratory tests, bacteria selection and healing mechanisms adoption. In this paper, three types of BSHC, including ureolytic bacterial healing concrete (UBHC), aerobic bacterial healing concrete (ABHC) and nitrifying bacterial healing concrete (NBHC), and ML models with five kinds of algorithms consisting of the support vector regression (SVR), decision tree regression (DTR), deep neural network (DNN), gradient boosting regression (GBR) and random forest (RF) are established. Most importantly, 22 influencing factors are first employed as variables in the ML models to predict the HP of BSHC. A total of 797 sets of BSHC tests available in the open literature between 2000 and 2021 are collected to verify the ML models. The grid search algorithm (GSA) is also utilised for tuning parameters of the algorithms. Moreover, the coefficient of determination (R) and root mean square error (RMSE) are applied to evaluate the prediction ability, including the prediction performance and accuracy of the ML models. The results exhibit that the GBR model has better prediction ability (R = 0.956, RMSE = 6.756%) than other ML models. Finally, the influence of the variables on the HP is investigated by employing the sensitivity analysis in the GBR model.

摘要

基于细菌的自愈合混凝土(BSHC)是一种著名的愈合技术,因其出色的裂缝愈合能力已被研究了几十年。然而,由于成本高且耗时,只有在实验室环境中才能设计和评估含有各种类型细菌的混凝土的愈合性能(HP)。利用机器学习(ML)模型预测BSHC的HP是受到使用混凝土力学性能的实际应用的启发。可以预测BSHC的HP,以节省实验室测试、细菌选择和采用愈合机制的时间和成本。本文建立了三种类型的BSHC,包括尿素分解细菌愈合混凝土(UBHC)、好氧细菌愈合混凝土(ABHC)和硝化细菌愈合混凝土(NBHC),以及由支持向量回归(SVR)、决策树回归(DTR)、深度神经网络(DNN)、梯度提升回归(GBR)和随机森林(RF)组成的五种算法的ML模型。最重要的是,首次将22个影响因素作为变量纳入ML模型来预测BSHC的HP。收集了2000年至2021年公开文献中可用的总共797组BSHC测试数据来验证ML模型。还利用网格搜索算法(GSA)对算法的参数进行调优。此外,应用决定系数(R)和均方根误差(RMSE)来评估预测能力,包括ML模型的预测性能和准确性。结果表明,GBR模型比其他ML模型具有更好的预测能力(R = 0.956,RMSE = 6.756%)。最后,通过在GBR模型中进行敏感性分析来研究变量对HP的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e73d/9267731/171162d9ff4e/materials-15-04436-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验