Suppr超能文献

利用机器学习算法(决策树、多层感知器神经网络、支持向量机和随机森林)及实验数据预测塑性混凝土的力学性能

Forecasting the Mechanical Properties of Plastic Concrete Employing Experimental Data Using Machine Learning Algorithms: DT, MLPNN, SVM, and RF.

作者信息

Nafees Afnan, Khan Sherbaz, Javed Muhammad Faisal, Alrowais Raid, Mohamed Abdeliazim Mustafa, Mohamed Abdullah, Vatin Nikolai Ivanovic

机构信息

Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.

NUST Institute of Civil Engineering NICE, School of Civil and Environmental Engineering SCEE, National University of Sciences and Technology NUST, Sector H-12, Islamabad 44000, Pakistan.

出版信息

Polymers (Basel). 2022 Apr 13;14(8):1583. doi: 10.3390/polym14081583.

Abstract

Increased population necessitates an expansion of infrastructure and urbanization, resulting in growth in the construction industry. A rise in population also results in an increased plastic waste, globally. Recycling plastic waste is a global concern. Utilization of plastic waste in concrete can be an optimal solution from recycling perspective in construction industry. As environmental issues continue to grow, the development of predictive machine learning models is critical. Thus, this study aims to create modelling tools for estimating the compressive and tensile strengths of plastic concrete. For predicting the strength of concrete produced with plastic waste, this research integrates machine learning algorithms (individual and ensemble techniques), including bagging and adaptive boosting by including weak learners. For predicting the mechanical properties, 80 cylinders for compressive strength and 80 cylinders for split tensile strength were casted and tested with varying percentages of irradiated plastic waste, either as of cement or fine aggregate replacement. In addition, a thorough and reliable database, including 320 compressive strength tests and 320 split tensile strength tests, was generated from existing literature. Individual, bagging and adaptive boosting models of decision tree, multilayer perceptron neural network, and support vector machines were developed and compared with modified learner model of random forest. The results implied that individual model response was enriched by utilizing bagging and boosting learners. A random forest with a modified learner algorithm provided the robust performance of the models with coefficient correlation of 0.932 for compressive strength and 0.86 for split tensile strength with the least errors. Sensitivity analyses showed that tensile strength models were least sensitive to water and coarse aggregates, while cement, silica fume, coarse aggregate, and age have a substantial effect on compressive strength models. To minimize overfitting errors and corroborate the generalized modelling result, a cross-validation K-Fold technique was used. Machine learning algorithms are used to predict mechanical properties of plastic concrete to promote sustainability in construction industry.

摘要

人口增长使得基础设施扩张和城市化成为必要,从而导致建筑业的发展。全球范围内,人口增长还导致塑料垃圾增多。回收塑料垃圾是一个全球关注的问题。从建筑业回收的角度来看,在混凝土中利用塑料垃圾可能是一个最佳解决方案。随着环境问题持续增加,开发预测性机器学习模型至关重要。因此,本研究旨在创建用于估计塑料混凝土抗压强度和抗拉强度的建模工具。为了预测用塑料垃圾生产的混凝土的强度,本研究整合了机器学习算法(个体和集成技术),包括通过纳入弱学习器的装袋法和自适应提升法。为了预测力学性能,浇筑了80个用于抗压强度测试的圆柱体和80个用于劈裂抗拉强度测试的圆柱体,并使用不同百分比的辐照塑料垃圾作为水泥或细集料替代品进行测试。此外,从现有文献中生成了一个全面且可靠的数据库,包括320次抗压强度测试和320次劈裂抗拉强度测试。开发了决策树、多层感知器神经网络和支持向量机的个体、装袋和自适应提升模型,并与随机森林的改进学习器模型进行比较。结果表明,通过使用装袋和提升学习器,个体模型响应得到了增强。具有改进学习器算法的随机森林提供了强大的模型性能,抗压强度的系数相关性为0.932,劈裂抗拉强度的系数相关性为0.86,误差最小。敏感性分析表明,抗拉强度模型对水和粗集料最不敏感,而水泥、硅灰、粗集料和龄期对抗压强度模型有显著影响。为了最小化过拟合误差并证实广义建模结果,使用了交叉验证K折技术。机器学习算法用于预测塑料混凝土的力学性能,以促进建筑业的可持续性发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5ee/9026837/569850fc75f1/polymers-14-01583-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验