Suppr超能文献

基于熔池辐射强度的激光粉末床熔融产品硬度预测

Hardness Prediction of Laser Powder Bed Fusion Product Based on Melt Pool Radiation Intensity.

作者信息

Zhang Ting, Zhou Xin, Zhang Peiyu, Duan Yucong, Cheng Xing, Wang Xuede, Ding Guoquan

机构信息

Key Laboratory of Airborne Plasma Dynamics, Air Force Engineering University, Xi'an 710038, China.

PLA Unit 93119, Jiuquan 735000, China.

出版信息

Materials (Basel). 2022 Jul 3;15(13):4674. doi: 10.3390/ma15134674.

Abstract

The quality stability and batch consistency of laser powder bed fusion products are key issues that must be solved in additive manufacturing. The melt pool radiation intensity data of laser powder bed fusion contain a significant amount of forming process information, and studies have shown that the analysis of melt pool radiation intensity using data-driven methods can achieve online quality judgment; however, there are still speed and accuracy problems. In this study, we propose a data-driven model for hardness predictions of laser powder bed fusion products based on process parameters fused with power spectrum features of melt pool intensity data, which quickly and accurately predicts the microhardness of laser powder bed fusion specimens and can make constructive guidance for closed-loop feedback quality regulation in practical production. The effects of three integrated learning models, Random Forest, XGBoost and LightGBM, are also compared. The results indicate that random forest has the highest prediction accuracy in this dataset; however, it has the limitation of slow training and prediction speeds. The LightGBM algorithm has the fastest training and prediction speeds, about 1.4% and 4.4% of the random forest, respectively; however, the prediction accuracy is lower than that of random forest and XGBoost. XGBoost has the best overall comparative performance with adequate training and prediction speeds, about 23.7% and 37.9% of the random forest, respectively, while ensuring a specified prediction accuracy, which is suitable for application in engineering practices.

摘要

激光粉末床熔融产品的质量稳定性和批次一致性是增材制造中必须解决的关键问题。激光粉末床熔融的熔池辐射强度数据包含大量成型过程信息,研究表明,使用数据驱动方法分析熔池辐射强度可实现在线质量判断;然而,仍存在速度和准确性问题。在本研究中,我们提出了一种基于融合熔池强度数据功率谱特征的工艺参数的激光粉末床熔融产品硬度预测数据驱动模型,该模型能快速准确地预测激光粉末床熔融试样的显微硬度,并可为实际生产中的闭环反馈质量调节提供建设性指导。还比较了随机森林、XGBoost和LightGBM这三种集成学习模型的效果。结果表明,随机森林在该数据集中预测精度最高;然而,它存在训练和预测速度慢的局限性。LightGBM算法训练和预测速度最快,分别约为随机森林的1.4%和4.4%;然而,其预测精度低于随机森林和XGBoost。XGBoost在整体比较性能方面表现最佳,训练和预测速度适中,分别约为随机森林的23.7%和37.9%,同时确保了指定的预测精度,适用于工程实践应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验