Suppr超能文献

在天气和土壤湿度条件波动的背景下利用机器学习预测油棕产量:通用工作流程评估

Prediction of Oil Palm Yield Using Machine Learning in the Perspective of Fluctuating Weather and Soil Moisture Conditions: Evaluation of a Generic Workflow.

作者信息

Khan Nuzhat, Kamaruddin Mohamad Anuar, Ullah Sheikh Usman, Zawawi Mohd Hafiz, Yusup Yusri, Bakht Muhammed Paend, Mohamed Noor Norazian

机构信息

School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia.

School of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia.

出版信息

Plants (Basel). 2022 Jun 27;11(13):1697. doi: 10.3390/plants11131697.

Abstract

Current development in precision agriculture has underscored the role of machine learning in crop yield prediction. Machine learning algorithms are capable of learning linear and nonlinear patterns in complex agro-meteorological data. However, the application of machine learning methods for predictive analysis is lacking in the oil palm industry. This work evaluated a supervised machine learning approach to develop an explainable and reusable oil palm yield prediction workflow. The input data included 12 weather and three soil moisture parameters along with 420 months of actual yield records of the study site. Multisource data and conventional machine learning techniques were coupled with an automated model selection process. The performance of two top regression models, namely Extra Tree and AdaBoost was evaluated using six statistical evaluation metrics. The prediction was followed by data preprocessing and feature selection. Selected regression models were compared with Random Forest, Gradient Boosting, Decision Tree, and other non-tree algorithms to prove the R driven performance superiority of tree-based ensemble models. In addition, the learning process of the models was examined using model-based feature importance, learning curve, validation curve, residual analysis, and prediction error. Results indicated that rainfall frequency, root-zone soil moisture, and temperature could make a significant impact on oil palm yield. Most influential features that contributed to the prediction process are rainfall, cloud amount, number of rain days, wind speed, and root zone soil wetness. It is concluded that the means of machine learning have great potential for the application to predict oil palm yield using weather and soil moisture data.

摘要

精准农业的当前发展凸显了机器学习在作物产量预测中的作用。机器学习算法能够从复杂的农业气象数据中学习线性和非线性模式。然而,机器学习方法在油棕产业的预测分析应用方面尚显不足。这项工作评估了一种监督式机器学习方法,以开发一个可解释且可重复使用的油棕产量预测工作流程。输入数据包括12个气象参数、3个土壤湿度参数以及该研究地点420个月的实际产量记录。多源数据和传统机器学习技术与一个自动模型选择过程相结合。使用六个统计评估指标对两个顶级回归模型(即极端随机树和自适应增强算法)进行了性能评估。预测之前进行了数据预处理和特征选择。将选定的回归模型与随机森林、梯度提升、决策树和其他非树算法进行比较,以证明基于树集成模型在R语言驱动下的性能优势。此外,还使用基于模型的特征重要性、学习曲线、验证曲线、残差分析和预测误差对模型的学习过程进行了检验。结果表明,降雨频率、根区土壤湿度和温度对油棕产量有显著影响。对预测过程贡献最大的影响因素是降雨量、云量、降雨天数、风速和根区土壤湿度。研究得出结论,利用机器学习方法,借助气象和土壤湿度数据预测油棕产量具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3210/9268852/bdb6265b2ad0/plants-11-01697-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验