Khursheed Sanya, Tehreem Rida, Awais Muhammad, Hussain Dilshad, Malik Muhammad Imran, Mok Young Sun, Siddiqui Ghayas Uddin
H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
Department of Chemical Engineering, Jeju National University, Jeju 63243, Korea.
Nanomaterials (Basel). 2022 Jun 30;12(13):2246. doi: 10.3390/nano12132246.
The purpose to conduct this research work is to study the effect of photocatalytic degradation by developing cost-effective and eco-friendly nitrogen and tungsten (metal/non-metal) co-doped titania (TiO). The inherent characteristics of synthesized nanoparticles (NPs) were analyzed by Fourier transform infra-red spectroscopy (FT-IR), ultra-violet visible (UV-Vis) spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), X-ray diffraction (XRD) spectrometry, and atomic force microscopy (AFM). Co-doping of metal and non-metal has intensified the photocatalysis trait of TiO nanoparticles in an aqueous medium. This co-doping of transition metal ions and modification of nitrogen extended the absorption into the visible region subsequently restraining the recombination of electrons/holes pair. The stronger light absorption in the visible region was required for the higher activity of photodegradation of dye under visible light illumination to confine bandgap energy which results in accelerating the rate of photodegradation. After efficient doping, the bandgap of titania reduced to 2.38 eV and caused the photodegradation of malachite green in visible light. The results of photocatalytic degradation were confirmed by using UV/Vis. spectroscopy and high-performance liquid chromatography coupled with a mass spectrophotometer (HPLC-ESI-MS) was used for the analysis of intermediates formed during photocatalytic utility of the work.
开展这项研究工作的目的是通过开发具有成本效益且环保的氮和钨(金属/非金属)共掺杂二氧化钛(TiO₂)来研究光催化降解效果。通过傅里叶变换红外光谱(FT-IR)、紫外可见(UV-Vis)光谱、拉曼光谱、场发射扫描电子显微镜(FE-SEM)、能量色散X射线光谱(EDX)、动态光散射(DLS)、X射线衍射(XRD)光谱和原子力显微镜(AFM)对合成纳米颗粒(NPs)的固有特性进行了分析。金属和非金属的共掺杂增强了TiO₂纳米颗粒在水介质中的光催化特性。过渡金属离子的这种共掺杂和氮的改性将吸收扩展到可见光区域,随后抑制了电子/空穴对的复合。在可见光照射下,为了限制带隙能量以加速光降解速率,染料的光降解更高活性需要在可见光区域有更强的光吸收。有效掺杂后,二氧化钛的带隙降低到2.38 eV,并导致孔雀石绿在可见光下发生光降解。光催化降解的结果通过UV/Vis光谱得到证实,并且使用高效液相色谱与质谱仪联用(HPLC-ESI-MS)对光催化过程中形成的中间体进行分析。