Suppr超能文献

基于偏微分方程、贝叶斯反演和人工神经网络的场效应传感器的合理设计。

Rational Design of Field-Effect Sensors Using Partial Differential Equations, Bayesian Inversion, and Artificial Neural Networks.

机构信息

Institute of Applied Mathematics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany.

Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering-Innovation Across Disciplines), Leibniz University Hannover, 30167 Hannover, Germany.

出版信息

Sensors (Basel). 2022 Jun 24;22(13):4785. doi: 10.3390/s22134785.

Abstract

Silicon nanowire field-effect transistors are promising devices used to detect minute amounts of different biological species. We introduce the theoretical and computational aspects of forward and backward modeling of biosensitive sensors. Firstly, we introduce a forward system of partial differential equations to model the electrical behavior, and secondly, a backward Bayesian Markov-chain Monte-Carlo method is used to identify the unknown parameters such as the concentration of target molecules. Furthermore, we introduce a machine learning algorithm according to multilayer feed-forward neural networks. The trained model makes it possible to predict the sensor behavior based on the given parameters.

摘要

硅纳米线场效应晶体管是一种很有前途的器件,可用于检测微量的不同生物物种。我们介绍了生物敏感传感器正向和反向建模的理论和计算方面。首先,我们引入了一个偏微分方程的正向系统来模拟电行为,其次,使用反向贝叶斯马尔可夫链蒙特卡罗方法来识别未知参数,如目标分子的浓度。此外,我们根据多层前馈神经网络引入了一种机器学习算法。训练后的模型使得根据给定的参数预测传感器的行为成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2124/9269136/eed624cf3620/sensors-22-04785-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验