Suppr超能文献

基于时间窗长度的脑电信号情绪识别研究

The Effect of Time Window Length on EEG-Based Emotion Recognition.

机构信息

Institute of Human Factors and Ergonomics, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China.

National Engineering Laboratory of Integrated Transportation Big Data Application Technology, National United Engineering Laboratory of Integrated and Intelligent Transportation, and Comprehensive Transportation Key Laboratory of Sichuan Province, School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 611756, China.

出版信息

Sensors (Basel). 2022 Jun 30;22(13):4939. doi: 10.3390/s22134939.

Abstract

Various lengths of time window have been used in feature extraction for electroencephalogram (EEG) signal processing in previous studies. However, the effect of time window length on feature extraction for the downstream tasks such as emotion recognition has not been well examined. To this end, we investigate the effect of different time window (TW) lengths on human emotion recognition to find the optimal TW length for extracting electroencephalogram (EEG) emotion signals. Both power spectral density (PSD) features and differential entropy (DE) features are used to evaluate the effectiveness of different TW lengths based on the SJTU emotion EEG dataset (SEED). Different lengths of TW are then processed with an EEG feature-processing approach, namely experiment-level batch normalization (ELBN). The processed features are used to perform emotion recognition tasks in the six classifiers, the results of which are then compared with the results without ELBN. The recognition accuracies indicate that a 2-s TW length has the best performance on emotion recognition and is the most suitable to be used in EEG feature extraction for emotion recognition. The deployment of ELBN in the 2-s TW can further improve the emotion recognition performances by 21.63% and 5.04% when using an SVM based on PSD and DE features, respectively. These results provide a solid reference for the selection of TW length in analyzing EEG signals for applications in intelligent systems.

摘要

在先前的研究中,各种时间窗口长度已被用于脑电(EEG)信号处理的特征提取。然而,时间窗口长度对下游任务(如情绪识别)的特征提取的影响尚未得到充分研究。为此,我们研究了不同时间窗口(TW)长度对人类情绪识别的影响,以找到提取脑电(EEG)情绪信号的最佳 TW 长度。基于 SJTU 情绪 EEG 数据集(SEED),我们使用功率谱密度(PSD)特征和差分熵(DE)特征来评估不同 TW 长度的有效性。然后,使用 EEG 特征处理方法(即实验级批量归一化(ELBN))对不同长度的 TW 进行处理。使用处理后的特征在六个分类器中执行情绪识别任务,并将结果与没有 ELBN 的结果进行比较。识别准确率表明,2 秒 TW 长度在情绪识别方面表现最佳,最适合用于情绪识别的 EEG 特征提取。在使用基于 PSD 和 DE 特征的 SVM 时,在 2 秒 TW 中部署 ELBN 可以分别将情绪识别性能提高 21.63%和 5.04%。这些结果为在智能系统应用中分析 EEG 信号时选择 TW 长度提供了可靠的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f17a/9269830/e0fec51fa3bc/sensors-22-04939-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验