Ju Xiangyu, Li Ming, Tian Wenli, Hu Dewen
College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.
Cogn Neurodyn. 2024 Apr;18(2):405-416. doi: 10.1007/s11571-023-10004-w. Epub 2023 Sep 11.
Electroencephalogram (EEG) emotion recognition plays an important role in human-computer interaction. An increasing number of algorithms for emotion recognition have been proposed recently. However, it is still challenging to make efficient use of emotional activity knowledge. In this paper, based on prior knowledge that emotion varies slowly across time, we propose a temporal-difference minimizing neural network (TDMNN) for EEG emotion recognition. We use maximum mean discrepancy (MMD) technology to evaluate the difference in EEG features across time and minimize the difference by a multibranch convolutional recurrent network. State-of-the-art performances are achieved using the proposed method on the SEED, SEED-IV, DEAP and DREAMER datasets, demonstrating the effectiveness of including prior knowledge in EEG emotion recognition.
脑电图(EEG)情感识别在人机交互中起着重要作用。近年来,人们提出了越来越多的情感识别算法。然而,有效利用情感活动知识仍然具有挑战性。在本文中,基于情感随时间缓慢变化的先验知识,我们提出了一种用于脑电图情感识别的时间差分最小化神经网络(TDMNN)。我们使用最大均值差异(MMD)技术来评估脑电图特征随时间的差异,并通过多分支卷积循环网络将差异最小化。使用所提出的方法在SEED、SEED-IV、DEAP和DREAMER数据集上取得了最优性能,证明了在脑电图情感识别中纳入先验知识的有效性。