Fang Jiaqi, Li Gang, Xu Wanxiu, Liu Wei, Chen Guibin, Zhu Yixia, Luo Youdong, Luo Xiaodong, Zhou Bin
College of Engineering, Zhejiang Normal University, Jinhua 321004, China.
College of Mathematical Medicine, Zhejiang Normal University, Jinhua 321004, China.
Brain Sci. 2024 Mar 1;14(3):245. doi: 10.3390/brainsci14030245.
Depressive disorder (DD) and generalized anxiety disorder (GAD), two prominent mental health conditions, are commonly diagnosed using subjective methods such as scales and interviews. Previous research indicated that machine learning (ML) can enhance our understanding of their underlying mechanisms. This study seeks to investigate the mechanisms of DD, GAD, and healthy controls (HC) while constructing a diagnostic framework for triple classifications. Specifically, the experiment involved collecting electroencephalogram (EEG) signals from 42 DD patients, 45 GAD patients, and 38 HC adults. The Phase Lag Index (PLI) was employed to quantify brain functional connectivity and analyze differences in functional connectivity among three groups. This study also explored the impact of time window feature computations on classification performance, including the XGBoost, CatBoost, LightGBM, and ensemble models. In order to enhance classification performance, a feature optimization algorithm based on Autogluon-Tabular was proposed. The results indicate that a 12 s time window provides optimal classification performance for the three groups, achieving the highest accuracy of 97.33% with the ensemble model. The analysis further reveals a significant reorganization of the brain, with the most pronounced changes observed in the frontal lobe and beta rhythm. These findings support the hypothesis of abnormal brain functional connectivity in DD and GAD, contributing valuable insights into the neural mechanisms underlying DD and GAD.
抑郁症(DD)和广泛性焦虑症(GAD)是两种突出的心理健康状况,通常使用量表和访谈等主观方法进行诊断。先前的研究表明,机器学习(ML)可以增进我们对其潜在机制的理解。本研究旨在探究抑郁症、广泛性焦虑症和健康对照者(HC)的机制,同时构建一个用于三重分类的诊断框架。具体而言,该实验涉及收集42名抑郁症患者、45名广泛性焦虑症患者和38名成年健康对照者的脑电图(EEG)信号。采用相位滞后指数(PLI)来量化大脑功能连接性,并分析三组之间功能连接性的差异。本研究还探讨了时间窗特征计算对分类性能的影响,包括XGBoost、CatBoost、LightGBM和集成模型。为了提高分类性能,提出了一种基于自动机器学习表格工具(Autogluon-Tabular)的特征优化算法。结果表明,12秒的时间窗为三组提供了最佳分类性能,集成模型达到了97.33%的最高准确率。分析进一步揭示了大脑的显著重组,额叶和β节律的变化最为明显。这些发现支持了抑郁症和广泛性焦虑症中大脑功能连接异常的假设,为抑郁症和广泛性焦虑症的神经机制提供了有价值的见解。