CAFS:一种基于注意力的鼻咽癌协同分割半监督方法。

CAFS: An Attention-Based Co-Segmentation Semi-Supervised Method for Nasopharyngeal Carcinoma Segmentation.

机构信息

School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.

School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China.

出版信息

Sensors (Basel). 2022 Jul 5;22(13):5053. doi: 10.3390/s22135053.

Abstract

Accurate segmentation of nasopharyngeal carcinoma is essential to its treatment effect. However, there are several challenges in existing deep learning-based segmentation methods. First, the acquisition of labeled data are challenging. Second, the nasopharyngeal carcinoma is similar to the surrounding tissues. Third, the shape of nasopharyngeal carcinoma is complex. These challenges make the segmentation of nasopharyngeal carcinoma difficult. This paper proposes a novel semi-supervised method named CAFS for automatic segmentation of nasopharyngeal carcinoma. CAFS addresses the above challenges through three mechanisms: the teacher-student cooperative segmentation mechanism, the attention mechanism, and the feedback mechanism. CAFS can use only a small amount of labeled nasopharyngeal carcinoma data to segment the cancer region accurately. The average DSC value of CAFS is 0.8723 on the nasopharyngeal carcinoma segmentation task. Moreover, CAFS has outperformed the state-of-the-art nasopharyngeal carcinoma segmentation methods in the comparison experiment. Among the compared state-of-the-art methods, CAFS achieved the highest values of DSC, Jaccard, and precision. In particular, the DSC value of CAFS is 7.42% higher than the highest DSC value in the state-of-the-art methods.

摘要

准确的鼻咽癌分割对其治疗效果至关重要。然而,现有的基于深度学习的分割方法存在几个挑战。首先,获取标记数据具有挑战性。其次,鼻咽癌与周围组织相似。第三,鼻咽癌的形状复杂。这些挑战使得鼻咽癌的分割变得困难。本文提出了一种名为 CAFS 的新型半监督方法,用于自动分割鼻咽癌。CAFS 通过三种机制解决了上述挑战:教师-学生合作分割机制、注意力机制和反馈机制。CAFS 仅使用少量标记的鼻咽癌数据就能准确地分割癌症区域。在鼻咽癌分割任务中,CAFS 的平均 DSC 值为 0.8723。此外,在比较实验中,CAFS 优于最先进的鼻咽癌分割方法。在比较的最先进方法中,CAFS 在 DSC、Jaccard 和精度方面取得了最高值。特别是,CAFS 的 DSC 值比最先进方法中的最高 DSC 值高 7.42%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3540/9269783/ac0c863c7da8/sensors-22-05053-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索