IEEE J Biomed Health Inform. 2022 Sep;26(9):4497-4507. doi: 10.1109/JBHI.2022.3181791. Epub 2022 Sep 9.
Nasopharyngeal Carcinoma (NPC) is a malignant epithelial cancer arising from the nasopharynx. Survival prediction is a major concern for NPC patients, as it provides early prognostic information to plan treatments. Recently, deep survival models based on deep learning have demonstrated the potential to outperform traditional radiomics-based survival prediction models. Deep survival models usually use image patches covering the whole target regions (e.g., nasopharynx for NPC) or containing only segmented tumor regions as the input. However, the models using the whole target regions will also include non-relevant background information, while the models using segmented tumor regions will disregard potentially prognostic information existing out of primary tumors (e.g., local lymph node metastasis and adjacent tissue invasion). In this study, we propose a 3D end-to-end Deep Multi-Task Survival model (DeepMTS) for joint survival prediction and tumor segmentation in advanced NPC from pretreatment PET/CT. Our novelty is the introduction of a hard-sharing segmentation backbone to guide the extraction of local features related to the primary tumors, which reduces the interference from non-relevant background information. In addition, we also introduce a cascaded survival network to capture the prognostic information existing out of primary tumors and further leverage the global tumor information (e.g., tumor size, shape, and locations) derived from the segmentation backbone. Our experiments with two clinical datasets demonstrate that our DeepMTS can consistently outperform traditional radiomics-based survival prediction models and existing deep survival models.
鼻咽癌(NPC)是一种起源于鼻咽部的恶性上皮癌。生存预测是 NPC 患者关注的主要问题,因为它可以提供早期预后信息来规划治疗方案。最近,基于深度学习的深度生存模型已经证明了其有超越传统基于放射组学的生存预测模型的潜力。深度生存模型通常使用覆盖整个目标区域(例如,鼻咽癌)的图像补丁或仅包含分割肿瘤区域的图像补丁作为输入。然而,使用整个目标区域的模型也会包含不相关的背景信息,而使用分割肿瘤区域的模型则会忽略潜在的肿瘤外预后信息(例如局部淋巴结转移和相邻组织侵犯)。在这项研究中,我们提出了一种用于从预处理 PET/CT 中对晚期 NPC 进行联合生存预测和肿瘤分割的 3D 端到端深度多任务生存模型(DeepMTS)。我们的创新之处在于引入了一个硬共享分割骨干,以指导提取与原发肿瘤相关的局部特征,从而减少了不相关背景信息的干扰。此外,我们还引入了一个级联生存网络,以捕获原发肿瘤外的预后信息,并进一步利用来自分割骨干的全局肿瘤信息(例如肿瘤大小、形状和位置)。我们在两个临床数据集上的实验表明,我们的 DeepMTS 可以一致地超越传统基于放射组学的生存预测模型和现有的深度生存模型。