Suppr超能文献

WET-Unet:用于鼻咽癌肿瘤分割的小波集成高效Transformer 网络。

WET-UNet: Wavelet integrated efficient transformer networks for nasopharyngeal carcinoma tumor segmentation.

机构信息

State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.

School of Information and Communication Engineering, Hainan University, Haikou, China.

出版信息

Sci Prog. 2024 Apr-Jun;107(2):368504241232537. doi: 10.1177/00368504241232537.

Abstract

Nasopharyngeal carcinoma is a malignant tumor that occurs in the epithelium and mucosal glands of the nasopharynx, and its pathological type is mostly poorly differentiated squamous cell carcinoma. Since the nasopharynx is located deep in the head and neck, early diagnosis and timely treatment are critical to patient survival. However, nasopharyngeal carcinoma tumors are small in size and vary widely in shape, and it is also a challenge for experienced doctors to delineate tumor contours. In addition, due to the special location of nasopharyngeal carcinoma, complex treatments such as radiotherapy or surgical resection are often required, so accurate pathological diagnosis is also very important for the selection of treatment options. However, the current deep learning segmentation model faces the problems of inaccurate segmentation and unstable segmentation process, which are mainly limited by the accuracy of data sets, fuzzy boundaries, and complex lines. In order to solve these two challenges, this article proposes a hybrid model WET-UNet based on the UNet network as a powerful alternative for nasopharyngeal cancer image segmentation. On the one hand, wavelet transform is integrated into UNet to enhance the lesion boundary information by using low-frequency components to adjust the encoder at low frequencies and optimize the subsequent computational process of the Transformer to improve the accuracy and robustness of image segmentation. On the other hand, the attention mechanism retains the most valuable pixels in the image for us, captures the remote dependencies, and enables the network to learn more representative features to improve the recognition ability of the model. Comparative experiments show that our network structure outperforms other models for nasopharyngeal cancer image segmentation, and we demonstrate the effectiveness of adding two modules to help tumor segmentation. The total data set of this article is 5000, and the ratio of training and verification is 8:2. In the experiment, accuracy = 85.2% and precision = 84.9% can show that our proposed model has good performance in nasopharyngeal cancer image segmentation.

摘要

鼻咽癌是一种发生在鼻咽部上皮和黏膜腺的恶性肿瘤,其病理类型多为低分化鳞状细胞癌。由于鼻咽部位于头颈部深部,早期诊断和及时治疗对患者的生存至关重要。然而,鼻咽癌肿瘤体积小,形状多样,即使是经验丰富的医生也难以准确勾画肿瘤轮廓。此外,由于鼻咽癌的特殊位置,常需要进行放疗或手术切除等复杂治疗,因此准确的病理诊断对于治疗方案的选择也非常重要。然而,现有的深度学习分割模型存在分割不准确和分割过程不稳定的问题,主要受到数据集准确性、边界模糊和线条复杂等因素的限制。为了解决这两个挑战,本文提出了一种基于 UNet 网络的混合模型 WET-UNet,作为鼻咽癌图像分割的有力替代方案。一方面,通过将小波变换集成到 UNet 中,利用低频成分增强病变边界信息,调整低频编码器,并优化 Transformer 的后续计算过程,从而提高图像分割的准确性和鲁棒性。另一方面,注意力机制为我们保留了图像中最有价值的像素,捕捉远程依赖关系,使网络能够学习更具代表性的特征,从而提高模型的识别能力。对比实验表明,我们的网络结构在鼻咽癌图像分割方面优于其他模型,并且我们证明了添加两个模块来帮助肿瘤分割的有效性。本文的总数据集为 5000 个,训练和验证的比例为 8:2。在实验中,准确率为 85.2%,精度为 84.9%,表明我们提出的模型在鼻咽癌图像分割中具有良好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/709d/11320696/b8dbfbe8da98/10.1177_00368504241232537-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验