Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 3001 12e Avenue N, Sherbrooke, Québec J1H 5H3, Canada.
Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 3001 12e Avenue N, Sherbrooke, Québec J1H 5H3, Canada.
Neuroimage. 2022 Oct 15;260:119425. doi: 10.1016/j.neuroimage.2022.119425. Epub 2022 Jul 6.
The accurate segmentation, labeling and quantification of cerebral blood vessels on MR imaging is important for basic and clinical research, yet results are not generalizable, and often require user intervention. New methods are needed to automate this process.
To automatically segment, label and quantify Circle of Willis (CW) arteries on Magnetic Resonance Angiography images using deep convolutional neural networks.
MRA images were pooled from three public and private databases. A total of 116 subjects (mean age 56 years ± 21 [standard deviation]; 72 women) were used to make up the training set (N=101) and the testing set (N=15). In each image, fourteen arterial segments making up or surrounding the CW were manually annotated and validated by a clinical expert. Convolutional neural network (CNN) models were trained on a training set to be finally combined in an ensemble to develop eICAB. Model performances were evaluated using (1) quantitative analysis (dice score on test set) and (2) qualitative analysis (external datasets, N=121). The reliability was assessed using multiple MRAs of healthy participants (ICC of vessel diameters and volumes on test-retest).
Qualitative analysis showed that eICAB correctly predicted the large, medium and small arteries in 99±0.4%, 97±1% and 88±7% of all images, respectively. For quantitative assessment, the average dice score coefficients for the large (ICAs, BA), medium (ACAs, MCAs, PCAs-P2), and small (AComm, PComm, PCAs-P1) vessels were 0.76±0.07, 0.76±0.08 and 0.41±0.27, respectively. These results were similar and, in some cases, statistically better (p<0.05) than inter-expert annotation variability and robust to image SNR. Finally, test-retest analysis showed that the model yielded high diameter and volume reliability (ICC=0.99).
We have developed a quick and reliable open-source CNN-based method capable of accurately segmenting and labeling the CW in MRA images. This method is largely independent of image quality. In the future, we foresee this approach as a critical step towards fully automated analysis of MRA databases in basic and clinical research.
磁共振成像上脑血 管的精确分割、标注和定量对于基础和临床研究非常重要,但结果尚无法推广,且通常需要用户干预。因此需要新的方法来实现这一过程的自动化。
使用深度卷积神经网络自动分割、标注和定量磁共振血管成像(MRA)上的 Willis 环(CW)动脉。
从三个公共和私人数据库中汇集了 MRA 图像。共有 116 名受试者(平均年龄 56 岁±21[标准差];72 名女性)用于构建训练集(N=101)和测试集(N=15)。在每张图像中,手动标注了构成或围绕 CW 的 14 个动脉段,并由临床专家进行验证。在训练集上对卷积神经网络(CNN)模型进行训练,最终组合成一个集成模型来开发 eICAB。使用(1)定量分析(测试集的 Dice 评分)和(2)定性分析(外部数据集,N=121)来评估模型性能。通过对健康参与者的多个 MRA 进行可靠性评估(测试-再测试时血管直径和体积的 ICC)。
定性分析表明,eICAB 正确预测了所有图像中 99±0.4%、97±1%和 88±7%的大、中、小动脉。定量评估时,大血管(ICA、BA)、中血管(ACA、MCA、PCA-P2)和小血管(AComm、PComm、PCA-P1)的平均 Dice 评分系数分别为 0.76±0.07、0.76±0.08 和 0.41±0.27。这些结果与专家间标注的变异性相似,且在某些情况下(p<0.05)优于专家间标注的变异性,对图像 SNR 具有鲁棒性。最后,测试-再测试分析表明,该模型具有很高的直径和体积可靠性(ICC=0.99)。
我们开发了一种快速可靠的基于 CNN 的开源方法,能够准确地分割和标注 MRA 图像上的 CW。该方法在很大程度上不受图像质量的影响。在未来,我们期望该方法成为基础和临床研究中全自动分析 MRA 数据库的关键步骤。