Zhou Langtao, Wu Huiting, Luo Guanghua, Zhou Hong
School of Cyberspace Security, Guangzhou University, Guangzhou, 510006, China.
Department of Radiology of the First Affiliated Hospital of the University of South China, Hengyang, 421001, China.
Insights Imaging. 2024 Mar 22;15(1):81. doi: 10.1186/s13244-024-01657-0.
Cerebrovascular diseases have emerged as significant threats to human life and health. Effectively segmenting brain blood vessels has become a crucial scientific challenge. We aimed to develop a fully automated deep learning workflow that achieves accurate 3D segmentation of cerebral blood vessels by incorporating classic convolutional neural networks (CNNs) and transformer models.
We used a public cerebrovascular segmentation dataset (CSD) containing 45 volumes of 1.5 T time-of-flight magnetic resonance angiography images. We collected data from another private middle cerebral artery (MCA) with lenticulostriate artery (LSA) segmentation dataset (MLD), which encompassed 3.0 T three-dimensional T1-weighted sequences of volumetric isotropic turbo spin echo acquisition MRI images of 107 patients aged 62 ± 11 years (42 females). The workflow includes data analysis, preprocessing, augmentation, model training with validation, and postprocessing techniques. Brain vessels were segmented using the U-Net, V-Net, UNETR, and SwinUNETR models. The model performances were evaluated using the dice similarity coefficient (DSC), average surface distance (ASD), precision (PRE), sensitivity (SEN), and specificity (SPE).
During 4-fold cross-validation, SwinUNETR obtained the highest DSC in each fold. On the CSD test set, SwinUNETR achieved the best DSC (0.853), PRE (0.848), SEN (0.860), and SPE (0.9996), while V-Net achieved the best ASD (0.99). On the MLD test set, SwinUNETR demonstrated good MCA segmentation performance and had the best DSC, ASD, PRE, and SPE for segmenting the LSA.
The workflow demonstrated excellent performance on different sequences of MRI images for vessels of varying sizes. This method allows doctors to visualize cerebrovascular structures.
A deep learning-based 3D cerebrovascular segmentation workflow is feasible and promising for visualizing cerebrovascular structures and monitoring cerebral small vessels, such as lenticulostriate arteries.
• The proposed deep learning-based workflow performs well in cerebrovascular segmentation tasks. • Among comparison models, SwinUNETR achieved the best DSC, ASD, PRE, and SPE values in lenticulostriate artery segmentation. • The proposed workflow can be used for different MR sequences, such as bright and black blood imaging.
脑血管疾病已成为对人类生命和健康的重大威胁。有效地分割脑血管已成为一项关键的科学挑战。我们旨在开发一种全自动深度学习工作流程,通过结合经典卷积神经网络(CNN)和Transformer模型来实现脑血管的精确三维分割。
我们使用了一个包含45个1.5T时间飞跃磁共振血管造影图像体积的公共脑血管分割数据集(CSD)。我们从另一个包含豆纹动脉(LSA)分割数据集(MLD)的私人大脑中动脉(MCA)收集数据,该数据集包含107名年龄为62±11岁(42名女性)患者的3.0T三维T1加权序列的体素各向同性涡轮自旋回波采集MRI图像。该工作流程包括数据分析、预处理、增强、带验证的模型训练和后处理技术。使用U-Net、V-Net、UNETR和SwinUNETR模型对脑血管进行分割。使用骰子相似系数(DSC)、平均表面距离(ASD)、精度(PRE)、灵敏度(SEN)和特异性(SPE)评估模型性能。
在4折交叉验证期间,SwinUNETR在每一折中都获得了最高的DSC。在CSD测试集上,SwinUNETR取得了最佳的DSC(0.853)、PRE(0.848)、SEN(0.860)和SPE(0.9996),而V-Net取得了最佳的ASD(0.99)。在MLD测试集上,SwinUNETR展示了良好的MCA分割性能,并且在分割LSA方面具有最佳的DSC、ASD、PRE和SPE。
该工作流程在不同大小血管的MRI图像不同序列上表现出优异性能。这种方法使医生能够可视化脑血管结构。
基于深度学习的三维脑血管分割工作流程对于可视化脑血管结构和监测脑小血管(如豆纹动脉)是可行且有前景的。
• 所提出的基于深度学习的工作流程在脑血管分割任务中表现良好。• 在比较模型中,SwinUNETR在豆纹动脉分割中获得了最佳的DSC、ASD、PRE和SPE值。• 所提出的工作流程可用于不同的MR序列,如亮血和黑血成像。