Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
Biophys J. 2022 Aug 16;121(16):3081-3102. doi: 10.1016/j.bpj.2022.07.013. Epub 2022 Jul 9.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) form the SNARE complex to mediate most fusion events of the secretory pathway. The neuronal SNARE complex is featured by its high stability and half-zippered conformation required for driving robust and fast synaptic exocytosis. However, these two features seem to be thermodynamically mutually exclusive. In this study, we have employed temperature-dependent disassociation assays and single-molecule Förster resonance energy transfer (FRET) experiments to analyze the stability and conformation of the neuronal SNARE complex. We reclassified the amino acids of the SNARE motif into four sub-groups (core, core-side I and II, and non-contact). Our data showed that the core residues predominantly contribute to the complex stability to meet a basal requirement for SNARE-mediated membrane fusion, while the core-side residues exert an unbalanced effect on the N- and C-half bundle stability that determines the half-zippered conformation of the neuronal SNARE complex, which would accommodate essential regulations by complexins and synaptotagmins for fast Ca-triggered membrane fusion. Furthermore, our data confirmed a strong coupling of folding energy between the N- and C-half assembly of the neuronal SNARE complex, which rationalizes the strong potency of the half-zippered conformation to conduct robust and fast fusion. Overall, these results uncovered that the stability profile of the neuronal SNARE complex reflects its potency to drive fast and robust membrane fusion. Based on these results, we also developed a new parameter, the stability factor (F), to characterize the overall stability of the neuronal SNARE complex and resolved a linear correlation between the stability and inter-residue coulombic interactions of the neuronal SNARE complex, which would help rationally design artificial SNARE complexes and remold functional SNARE complexes with desirable stability.
可溶性 N-乙基马来酰亚胺敏感因子附着蛋白受体 (SNAREs) 形成 SNARE 复合物来介导大多数分泌途径的融合事件。神经元 SNARE 复合物的特点是其高度稳定性和半拉链构象,这是驱动强大和快速突触胞吐所必需的。然而,这两个特征似乎在热力学上是相互排斥的。在这项研究中,我们采用了依赖于温度的解离测定和单分子Förster 共振能量转移 (FRET) 实验来分析神经元 SNARE 复合物的稳定性和构象。我们将 SNARE 基序的氨基酸重新分类为四个亚组(核心、核心侧 I 和 II 以及非接触)。我们的数据表明,核心残基主要有助于复合物的稳定性,以满足 SNARE 介导的膜融合的基本要求,而核心侧残基对 N 和 C 半束的稳定性产生不平衡的影响,从而决定了神经元 SNARE 复合物的半拉链构象,这将适应复合蛋白和突触融合蛋白对快速 Ca 触发的膜融合的基本调节。此外,我们的数据证实了神经元 SNARE 复合物的 N 和 C 半组装之间的折叠能量具有很强的耦合性,这合理地解释了半拉链构象的强大效力,以进行强大和快速的融合。总的来说,这些结果揭示了神经元 SNARE 复合物的稳定性谱反映了其驱动快速和强大融合的效力。基于这些结果,我们还开发了一个新参数,即稳定性因子 (F),来表征神经元 SNARE 复合物的整体稳定性,并确定了神经元 SNARE 复合物的稳定性和残基间库仑相互作用之间的线性相关性,这将有助于合理设计人工 SNARE 复合物,并重塑具有理想稳定性的功能性 SNARE 复合物。