State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China.
CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
Sci Total Environ. 2022 Nov 1;845:157219. doi: 10.1016/j.scitotenv.2022.157219. Epub 2022 Jul 7.
Sequestration of soil carbon is considered as a promising strategy for mitigating climate change. As a source of recalcitrant carbon, biochar has been widely used in agricultural soil as a mean of stabilizing soil organic carbon (SOC). However, limited reports focused on the changes of biochar itself in soil when compared with the bulk SOC after biochar addition. To explore how environmental conditions influence the stability of biochar, isolated straw-derived biochar particles (0.25-2 mm) were embedded in an Anthrosol for 12 months under varied environmental conditions of incubation temperature (15 °C, 25 °C and 35 °C) and moisture (60 % and 150 % of saturated water content). Within the early 1 month of incubation, pH and inorganic nitrogen contents of biochar changed significantly as a function of moisture and temperature (p < 0.01), whereas water extractable organic carbon (WEOC) content was only influenced by moisture content (p < 0.01). The highest temperature (35 °C) and saturated water content (150 %) induced the largest aging response reflected by increases in oxygen-containing surface functional groups of biochar, including C-O-C (51.35 % - 149 %) and N-C-O (65.55 % - 119 %). Pearson correlation and RDA analysis indicated that the chemical properties of biochar contribute more to the carbon-source utilization properties of biochar colonized microbial community within 1 month of incubation, while the bulk soil chemical properties (pH, DOC, MBC and NO) had a higher contribution until the end of incubation. Moisture rather than temperature was the dominant factor in regulating the functional diversity of biochar colonized microbial community.
土壤碳封存被认为是缓解气候变化的一种很有前途的策略。生物炭作为一种难降解碳源,已被广泛应用于农业土壤,作为稳定土壤有机碳(SOC)的手段。然而,与添加生物炭后大量 SOC 相比,关于添加生物炭后土壤中生物炭本身变化的报道有限。为了探索环境条件如何影响生物炭的稳定性,将分离的秸秆衍生生物炭颗粒(0.25-2 毫米)在不同的环境条件下(培养温度为 15°C、25°C 和 35°C,以及水分含量为 60%和 150%的饱和含水量)嵌入Anthrosol 中 12 个月。在培养的最初 1 个月内,生物炭的 pH 值和无机氮含量随水分和温度的变化而显著变化(p<0.01),而水可提取有机碳(WEOC)含量仅受水分含量的影响(p<0.01)。最高温度(35°C)和饱和含水量(150%)导致生物炭含氧表面官能团的增加,从而引起最大的老化反应,包括 C-O-C(51.35%-149%)和 N-C-O(65.55%-119%)。Pearson 相关和 RDA 分析表明,在培养的最初 1 个月内,生物炭的化学性质对生物炭定殖微生物群落的碳源利用特性贡献更大,而土壤化学性质(pH 值、DOC、MBC 和 NO)直到培养结束时的贡献更大。水分而不是温度是调节生物炭定殖微生物群落功能多样性的主导因素。