College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China; Department of Environmental Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
Sci Total Environ. 2022 Nov 1;845:157194. doi: 10.1016/j.scitotenv.2022.157194. Epub 2022 Jul 8.
Parabens are ubiquitous pollutants in the environment and humans due to their wide applications in food, pharmaceuticals, and personal care products. Although the estrogenic activity of some parabens has been confirmed, the underlying mechanisms and the structure-estrogenic activity relationship are still largely unclear. Here, we systematically used in silico and in vitro approaches to investigate the estrogenic potency of typical parabens, including methyl-, ethyl-, propyl-, iso-propyl-, butyl-, iso-butyl- and benzyl-paraben. Molecular dynamics simulations and binding free energy calculations were combined to investigate the atomic-level mechanism of paraben binding to estrogen receptors (ERs). Computational analysis showed that ER were the targets of tested parabens and kept a stable agonist conformation. The calculated total binding free energies suggested that van der Waals interactions were the major driving forces for paraben-ER interaction and correlated with the structure of paraben side chains. In in vitro assays, paraben with an aromatic side chain, benzyl-paraben, showed the strongest estrogenic activity at 0.01 μM and the EC at 0.796 ± 0.307 μM, on par with levels commonly detected in human organs. Among tested parabens with an alkyl side chain, the estrogenicity increased as the side chain length increased from 1 to 4, but no significant difference appeared between parabens with isomeric alkyl side chains (propyl- vs isopropyl and butyl- vs iso-butylparaben). The estrogenic activity of parabens was significantly related to the calculated binding energies (R = 0.94, p = 0.0012), depending on the side chains of parabens. Our findings provide a significant mechanism for parabens to disrupt estrogenic function and considerations for structural optimization from the perspective of environmental protection.
对羟基苯甲酸酯是环境和人类中无处不在的污染物,因为它们广泛应用于食品、制药和个人护理产品中。尽管一些对羟基苯甲酸酯具有雌激素活性已得到证实,但作用机制和结构-雌激素活性关系在很大程度上仍不清楚。在这里,我们系统地使用了计算和体外方法来研究典型对羟基苯甲酸酯的雌激素活性,包括甲酯、乙酯、丙酯、异丙酯、丁酯、异丁酯和苄基对羟基苯甲酸酯。分子动力学模拟和结合自由能计算相结合,研究了对羟基苯甲酸酯与雌激素受体(ERs)结合的原子水平机制。计算分析表明,ER 是测试的对羟基苯甲酸酯的靶标,并保持稳定的激动剂构象。计算得出的总结合自由能表明,范德华相互作用是对羟基苯甲酸酯-ER 相互作用的主要驱动力,与对羟基苯甲酸酯侧链的结构相关。在体外实验中,带有芳香侧链的对羟基苯甲酸酯苄基对羟基苯甲酸酯在 0.01 μM 时表现出最强的雌激素活性,EC 为 0.796 ± 0.307 μM,与人体器官中常见的水平相当。在所测试的具有烷基侧链的对羟基苯甲酸酯中,随着侧链长度从 1 增加到 4,雌激素活性增加,但具有异构烷基侧链的对羟基苯甲酸酯(丙基对异丙基和丁基对异丁基对羟基苯甲酸酯)之间没有明显差异。对羟基苯甲酸酯的雌激素活性与计算得出的结合能显著相关(R = 0.94,p = 0.0012),这取决于对羟基苯甲酸酯的侧链。我们的研究结果为对羟基苯甲酸酯破坏雌激素功能提供了重要的机制,并从环境保护的角度考虑了结构优化。