Suppr超能文献

全基因组荟萃分析揭示高血压新的基因特征和潜在药物靶点。

Genome-wide Meta-analysis Reveals New Gene Signatures and Potential Drug Targets of Hypertension.

作者信息

Ali Fawad, Khan Arifullah, Muhammad Syed Aun, Abbas Syed Qamar, Hassan Syed Shams Ul, Bungau Simona

机构信息

Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000 Pakistan.

Department of Pharmacy, Kohat University of science and technology, Kohat, 26000 Pakistan.

出版信息

ACS Omega. 2022 Jun 20;7(26):22754-22772. doi: 10.1021/acsomega.2c02277. eCollection 2022 Jul 5.

Abstract

The prevalence of hypertension reported around the world is increasing and is an important public health challenge. This study was designed to explore the disease's genetic variations and to identify new hypertension-related genes and target proteins. We analyzed 22 publicly available Affymetrix cDNA datasets of hypertension using an integrated system-level framework involving differential expression genetic (DEG) analysis, data mining, gene enrichment, protein-protein interaction, microRNA analysis, toxicogenomics, gene regulation, molecular docking, and simulation studies. We found potential DEGs after screening out the extracellular proteins. We studied the functional role of seven shortlisted DEGs (ADM, EDN1, ANGPTL4, NFIL3, MSR1, CEBPD, and USP8) in hypertension after disease gene curation analysis. The expression profiling and cluster analysis showed significant variations and enriched GO terms. hsa-miR-365a-3p, hsa-miR-2052, hsa-miR-3065-3p, hsa-miR-603, hsa-miR-7113-3p, hsa-miR-3923, and hsa-miR-524-5p were identified as hypertension-associated miRNA targets for each gene using computational algorithms. We found functional interactions of source DEGs with target and important gene signatures including EGFR, AGT, AVP, APOE, RHOA, SRC, APOB, STAT3, UBC, LPL, APOA1, and AKT1 associated with the disease. These DEGs are mainly involved in fatty acid metabolism, myometrial pathways, MAPK, and G-alpha signaling pathways linked with hypertension pathogenesis. We predicted significantly disordered regions of 71.2, 48.8, and 45.4% representing the mutation in the sequence of NFIL3, USP8, and ADM, respectively. Regulation of gene expression was performed to find upregulated genes. Molecular docking analysis was used to evaluate Food and Drug Administration-approved medicines against the four DEGs that were overexpressed. For each elevated target protein, the three best drug candidates were chosen. Furthermore, molecular dynamics (MD) simulation using the target's active sites for 100 ns was used to validate these 12 complexes after docking. This investigation establishes the worth of systems genetics for finding four possible genes as potential drug targets for hypertension. These network-based approaches are significant for finding genetic variant data, which will advance the understanding of how to hasten the identification of drug targets and improve the understanding regarding the treatment of hypertension.

摘要

世界各地报告的高血压患病率正在上升,这是一项重大的公共卫生挑战。本研究旨在探索该疾病的基因变异,并识别新的高血压相关基因和靶蛋白。我们使用了一个综合的系统级框架,包括差异表达基因(DEG)分析、数据挖掘、基因富集、蛋白质-蛋白质相互作用、微小RNA分析、毒理基因组学、基因调控、分子对接和模拟研究,对22个公开可用的Affymetrix高血压cDNA数据集进行了分析。在筛选出细胞外蛋白后,我们发现了潜在的差异表达基因。在进行疾病基因策展分析后,我们研究了七个入围的差异表达基因(ADM、EDN1、ANGPTL4、NFIL3、MSR1、CEBPD和USP8)在高血压中的功能作用。表达谱分析和聚类分析显示出显著的差异和丰富的基因本体(GO)术语。使用计算算法,已将hsa-miR-365a-3p、hsa-miR-2052、hsa-miR-3065-3p、hsa-miR-603、hsa-miR-7113-3p、hsa-miR-3923和hsa-miR-524-5p鉴定为每个基因的高血压相关微小RNA靶标。我们发现了源差异表达基因与靶标以及包括EGFR、AGT、AVP、APOE、RHOA、SRC、APOB、STAT3、UBC、LPL、APOA1和AKT1在内的与该疾病相关的重要基因特征之间的功能相互作用。这些差异表达基因主要参与脂肪酸代谢、子宫肌层途径、丝裂原活化蛋白激酶(MAPK)和与高血压发病机制相关的G-α信号通路。我们预测分别有71.2%、48.8%和45.4%的显著无序区域代表NFIL3、USP8和ADM序列中的突变。进行基因表达调控以寻找上调基因。使用分子对接分析来评估美国食品药品监督管理局(FDA)批准的针对四个过表达差异表达基因的药物。对于每个升高的靶蛋白,选择了三个最佳候选药物。此外,在对接后,使用靶标的活性位点进行100纳秒的分子动力学(MD)模拟来验证这12种复合物。这项研究确定了系统遗传学对于寻找四个可能作为高血压潜在药物靶标的基因的价值。这些基于网络的方法对于发现基因变异数据具有重要意义,这将推动对如何加速药物靶标鉴定的理解,并增进对高血压治疗的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/907e/9260904/14c48e019276/ao2c02277_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验