Suppr超能文献

使用机器学习在青少年和成人临床样本中识别自闭症谱系障碍的预测特征。

Identifying predictive features of autism spectrum disorders in a clinical sample of adolescents and adults using machine learning.

机构信息

Department of Psychiatry, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.

Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Philipps University, Marburg, Germany.

出版信息

Sci Rep. 2020 Mar 18;10(1):4805. doi: 10.1038/s41598-020-61607-w.

Abstract

Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most widely used behavioral diagnostic tools is the Autism Diagnostic Observation Schedule (ADOS). Previous work using machine learning techniques suggested that ASD detection in children can be achieved with substantially fewer items than the original ADOS. Here, we expand on this work with a specific focus on adolescents and adults as assessed with the ADOS Module 4. We used a machine learning algorithm (support vector machine) to examine whether ASD detection can be improved by identifying a subset of behavioral features from the ADOS Module 4 in a routine clinical sample of N = 673 high-functioning adolescents and adults with ASD (n = 385) and individuals with suspected ASD but other best-estimate or no psychiatric diagnoses (n = 288). We identified reduced subsets of 5 behavioral features for the whole sample as well as age subgroups (adolescents vs. adults) that showed good specificity and sensitivity and reached performance close to that of the existing ADOS algorithm and the full ADOS, with no significant differences in overall performance. These results may help to improve the complicated diagnostic process of ASD by encouraging future efforts to develop novel diagnostic instruments for ASD detection based on the identified constructs as well as aiding clinicians in the difficult question of differential diagnosis.

摘要

诊断自闭症谱系障碍(ASD)是一个复杂且耗时的过程,在年龄较大的个体中尤其具有挑战性。最广泛使用的行为诊断工具之一是自闭症诊断观察量表(ADOS)。先前使用机器学习技术的工作表明,通过比原始 ADOS 少得多的项目就可以实现对儿童 ASD 的检测。在这里,我们扩展了这项工作,特别关注使用 ADOS 模块 4 评估的青少年和成年人。我们使用机器学习算法(支持向量机)来检查在 ASD 患者的例行临床样本(N=673 名高功能青少年和成年人(n=385)和疑似 ASD 但其他最佳估计或没有精神诊断的个体(n=288)中,是否可以通过从 ADOS 模块 4 中识别行为特征的子集来改善 ASD 的检测。我们确定了全样本以及年龄亚组(青少年与成年人)的 5 个行为特征的简化子集,具有良好的特异性和敏感性,达到了与现有 ADOS 算法和完整 ADOS 相当的性能,且在整体性能上没有显著差异。这些结果可能有助于通过鼓励未来基于所确定的 ASD 检测结构来开发新的 ASD 诊断工具的努力,以及帮助临床医生解决困难的鉴别诊断问题,从而改善 ASD 的复杂诊断过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/282f/7080741/0380c3686dc4/41598_2020_61607_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验