Facultad de Ingeniería y Ciencias, Universidad Autonoma de Tamaulipas, Ciudad Victoria 87000, Tamaulipas, Mexico.
Intelligent Systems Department, Polytechnic University of Victoria, Ciudad Victoria 87138, Tamaulipas, Mexico.
Comput Intell Neurosci. 2022 Jun 29;2022:7571208. doi: 10.1155/2022/7571208. eCollection 2022.
Brain-computer interfaces are systems capable of mapping brain activity to specific commands, which enables to remotely automate different types of processes in hardware devices or software applications. However, the development of brain-computer interfaces has been limited by several factors that affect their performance, such as the characterization of events in brain signals and the excessive processing load generated by the high volume of data. In this paper, we propose a method based on computational intelligence techniques to handle these problems, turning them into a single optimization problem. An artificial neural network is used as a classifier for event detection, along with an evolutionary algorithm to find the optimal subset of electrodes and data points that better represents the target event. The obtained results indicate our approach is a competitive and viable alternative for feature extraction in electroencephalograms, leading to high accuracy values and allowing the reduction of a significant amount of data.
脑机接口是一种能够将大脑活动映射到特定命令的系统,使硬件设备或软件应用中的不同类型的过程能够远程自动执行。然而,脑机接口的发展受到了几个因素的限制,这些因素影响了它们的性能,例如脑信号中事件的特征描述以及由大量数据产生的过高处理负载。在本文中,我们提出了一种基于计算智能技术的方法来处理这些问题,将它们转化为一个单一的优化问题。人工神经网络被用作事件检测的分类器,同时使用进化算法来找到能够更好地表示目标事件的最优电极子集和数据点。所得到的结果表明,我们的方法是脑电图特征提取的一种有竞争力和可行的替代方案,可实现高精度值,并允许大量数据的减少。