Suppr超能文献

基于运动想象的脑-机接口的深度时-空特征学习。

Deep Temporal-Spatial Feature Learning for Motor Imagery-Based Brain-Computer Interfaces.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Nov;28(11):2356-2366. doi: 10.1109/TNSRE.2020.3023417. Epub 2020 Nov 6.

Abstract

Motor imagery (MI) decoding is an important part of brain-computer interface (BCI) research, which translates the subject's intentions into commands that external devices can execute. The traditional methods for discriminative feature extraction, such as common spatial pattern (CSP) and filter bank common spatial pattern (FBCSP), have only focused on the energy features of the electroencephalography (EEG) and thus ignored the further exploration of temporal information. However, the temporal information of spatially filtered EEG may be critical to the performance improvement of MI decoding. In this paper, we proposed a deep learning approach termed filter-bank spatial filtering and temporal-spatial convolutional neural network (FBSF-TSCNN) for MI decoding, where the FBSF block transforms the raw EEG signals into an appropriate intermediate EEG presentation, and then the TSCNN block decodes the intermediate EEG signals. Moreover, a novel stage-wise training strategy is proposed to mitigate the difficult optimization problem of the TSCNN block in the case of insufficient training samples. Firstly, the feature extraction layers are trained by optimization of the triplet loss. Then, the classification layers are trained by optimization of the cross-entropy loss. Finally, the entire network (TSCNN) is fine-tuned by the back-propagation (BP) algorithm. Experimental evaluations on the BCI IV 2a and SMR-BCI datasets reveal that the proposed stage-wise training strategy yields significant performance improvement compared with the conventional end-to-end training strategy, and the proposed approach is comparable with the state-of-the-art method.

摘要

运动想象 (MI) 解码是脑机接口 (BCI) 研究的重要组成部分,它将主体的意图转化为外部设备可以执行的命令。传统的判别特征提取方法,如公共空间模式 (CSP) 和滤波器组公共空间模式 (FBCSP),仅关注脑电图 (EEG) 的能量特征,因此忽略了对时间信息的进一步探索。然而,空间滤波 EEG 的时间信息可能对 MI 解码性能的提高至关重要。在本文中,我们提出了一种称为滤波器组空间滤波和时频空间卷积神经网络 (FBSF-TSCNN) 的深度学习方法用于 MI 解码,其中 FBSF 块将原始 EEG 信号转换为适当的中间 EEG 表示,然后 TSCNN 块对中间 EEG 信号进行解码。此外,我们提出了一种新颖的分阶段训练策略,以减轻在训练样本不足的情况下 TSCNN 块的困难优化问题。首先,通过优化三元组损失来训练特征提取层。然后,通过优化交叉熵损失来训练分类层。最后,通过反向传播 (BP) 算法对整个网络 (TSCNN) 进行微调。在 BCI IV 2a 和 SMR-BCI 数据集上的实验评估表明,与传统的端到端训练策略相比,所提出的分阶段训练策略可显著提高性能,并且所提出的方法与最先进的方法相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验