Wang Chao, Tao Min, Chuah Chen-Nee, Nagy James, Lou Yifei
Department of Statistic and Data Science, Southern University of Science and Technology, Shenzhen 518055, China.
Department of Electrical and Computer Engineering, University of California Davis, Davis, CA 95616, USA.
Inverse Probl. 2022 Jun;38(6). Epub 2022 May 6.
In this paper, we study the minimization on the gradient for imaging applications. Several recent works have demonstrated that is better than the norm when approximating the norm to promote sparsity. Consequently, we postulate that applying on the gradient is better than the classic total variation (the norm on the gradient) to enforce the sparsity of the image gradient. Numerically, we design a specific splitting scheme, under which we can prove subsequential and global convergence for the alternating direction method of multipliers (ADMM) under certain conditions. Experimentally, we demonstrate visible improvements of over and other nonconvex regularizations for image recovery from low-frequency measurements and two medical applications of MRI and CT reconstruction. Finally, we reveal some empirical evidence on the superiority of over when recovering piecewise constant signals from low-frequency measurements to shed light on future works.
在本文中,我们研究用于成像应用的梯度最小化问题。最近的一些工作表明,在逼近(l_1)范数以促进稀疏性时,[此处缺失特定内容]优于(l_2)范数。因此,我们推测在梯度上应用[此处缺失特定内容]比经典的总变分(梯度上的(l_1)范数)更能增强图像梯度的稀疏性。在数值方面,我们设计了一种特定的分裂方案,在此方案下我们可以证明在某些条件下乘子交替方向法(ADMM)的子序列收敛性和全局收敛性。在实验上,我们展示了[此处缺失特定内容]相对于(l_2)范数以及其他非凸正则化方法在从低频测量中进行图像恢复以及MRI和CT重建这两个医学应用方面有明显的改进。最后,我们揭示了一些关于在从低频测量中恢复分段常数信号时[此处缺失特定内容]优于(l_2)范数的经验证据,以便为未来的工作提供启示。