Suppr超能文献

仿河豚皮的耦合仿生减阻表面:覆盖有圆锥形凸起和弹性层。

Coupled Bionic Drag-Reducing Surface Covered by Conical Protrusions and Elastic Layer Inspired from Pufferfish Skin.

机构信息

College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

出版信息

ACS Appl Mater Interfaces. 2022 Jul 20;14(28):32747-32760. doi: 10.1021/acsami.2c08513. Epub 2022 Jul 10.

Abstract

Inspired by the drag-reducing properties of the cone-like spines and elastic layer covering the pufferfish skin, important efforts are underway to establish rational multiple drag-reducing strategies for the development of new marine engineering materials. In the present work, a new drag-reducing surface (CPES) covered by conical protrusions (sparse "-type" with rough height = 13-15) and an elastic layer are constructed on copper substrate via a hybrid method, combining the sintering and coating processes. The drag-reducing feature of the prepared CPES biomimetic surface is achieved by rheometer and particle image velocimetry (PIV) experiments. To comprehensively investigate its drag reduction mechanism, the porous copper substrate (PCS), copper substrate (CS), conical protrusion resin substrate (CPRS), and conical protrusion porous copper substrate (CPPCS) were used for a comparative analysis. In laminar flow, we discovered that the conical protrusion structure and wettability of the elastic surface coupling affect the CPES sample's drag-reducing performance (7-8%) and that the interface produced slip to reduce the viscous drag. In turbulent flow, the CPES biomimetic surface exhibits an 11.5-17.5% drag-reducing performance. Such behavior was enabled by two concurrent mechanisms: (i) The conical protrusions as vortex generators enhance the number of vortices and the wake effect, enabling faster movement of downstream strips, reducing viscous drag; (ii) The conical protrusion elements break and lift large-scale vortices to produce numerous small-scale vortices with low energy, effectively weakening perturbations and momentum exchange. Additionally, the elastic layer shows high adhesion and stability on copper substrate after sandpaper abrasion and water-flow erosion tests. The copper substrate surface formed by the sintering method is also covered with dense porous structures, which gives the elastic layer and conical protrusions excellent combined robustness. Our findings not only shed new light on the design of robust drag-reducing surfaces but also provide new avenues for underwater drag reduction in the field of marine applications.

摘要

受河豚鱼皮肤锥形刺和弹性层的减阻特性的启发,人们正在努力建立合理的多种减阻策略,以开发新型海洋工程材料。本工作通过烧结和涂覆工艺相结合的混合方法,在铜基底上构建了一种新的具有锥形突起(稀疏“-”型,粗糙高度 = 13-15)和弹性层的减阻表面(CPES)。通过流变仪和粒子图像测速(PIV)实验实现了所制备 CPES 仿生表面的减阻特性。为了全面研究其减阻机制,对多孔铜基底(PCS)、铜基底(CS)、锥形突起树脂基底(CPRS)和锥形突起多孔铜基底(CPPCS)进行了对比分析。在层流中,我们发现锥形突起结构和弹性表面的润湿性耦合影响 CPES 样品的减阻性能(7-8%),界面产生滑移以减少粘性阻力。在湍流中,CPES 仿生表面表现出 11.5-17.5%的减阻性能。这种行为是由两种并发机制实现的:(i)作为涡旋发生器的锥形突起增强了涡的数量和尾流效应,使下游条带更快地移动,减少粘性阻力;(ii)锥形突起元件破坏和提升大尺度涡旋,产生具有低能量的大量小尺度涡旋,有效减弱了扰动和动量交换。此外,弹性层在砂纸磨损和水流侵蚀试验后在铜基底上表现出高附着力和稳定性。通过烧结方法形成的铜基底表面也覆盖有致密的多孔结构,这为弹性层和锥形突起提供了极好的综合稳定性。我们的研究结果不仅为设计稳健的减阻表面提供了新的思路,而且为海洋应用领域的水下减阻提供了新的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验