Suppr超能文献

基于图正则化一位矩阵填充的药物-疾病关联计算预测

Computational Prediction of Drug-Disease Association Based on Graph-Regularized One Bit Matrix Completion.

作者信息

Mongia Aanchal, Chouzenoux Emilie, Majumdar Angshul

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2022 Nov-Dec;19(6):3332-3339. doi: 10.1109/TCBB.2022.3189879. Epub 2022 Dec 8.

Abstract

Investigation of existing drugs is an effective alternative to the discovery of new drugs for treating diseases. This task of drug re-positioning can be assisted by various kinds of computational methods to predict the best indication for a drug given the open-source biological datasets. Owing to the fact that similar drugs tend to have common pathways and disease indications, the association matrix is assumed to be of low-rank structure. Hence, the problem of drug-disease association prediction can be modeled as a low-rank matrix completion problem. In this work, we propose a novel matrix completion framework that makes use of the side-information associated with drugs/diseases for the prediction of drug-disease indications modeled as neighborhood graph: Graph regularized 1-bit matrix completion (GR1BMC). The algorithm is specially designed for binary data and uses parallel proximal algorithm to solve the aforesaid minimization problem taking into account all the constraints including the neighborhood graph incorporation and restricting predicted scores within the specified range. The results have been validated on two standard databases by evaluating the AUC across the 10-fold cross-validation splits. The usage of the method is also evaluated through a case study where top 5 indications are predicted for novel drugs, which then are verified with the CTD database.

摘要

研究现有药物是发现治疗疾病新药的一种有效替代方法。药物重新定位任务可借助各种计算方法,利用开源生物数据集预测药物的最佳适应症。由于相似药物往往具有共同的通路和疾病适应症,因此假设关联矩阵具有低秩结构。因此,药物-疾病关联预测问题可建模为低秩矩阵补全问题。在这项工作中,我们提出了一种新颖的矩阵补全框架,该框架利用与药物/疾病相关的辅助信息来预测建模为邻域图的药物-疾病适应症:图正则化1位矩阵补全(GR1BMC)。该算法专为二进制数据设计,并使用并行近端算法来解决上述最小化问题,同时考虑所有约束条件,包括纳入邻域图以及将预测分数限制在指定范围内。通过在10折交叉验证分割中评估AUC,在两个标准数据库上验证了结果。还通过一个案例研究评估了该方法的使用情况,其中预测了新药的前5个适应症,然后用CTD数据库进行了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验