Suppr超能文献

基于加权局部信息增强图神经网络的药物重定位。

Drug repositioning based on weighted local information augmented graph neural network.

机构信息

Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China.

College of Computer Science and Electronic Engineering, Hunan University, Lushan Road (S), Yuelu District, Changsha, Hunan Province 410082, China.

出版信息

Brief Bioinform. 2023 Nov 22;25(1). doi: 10.1093/bib/bbad431.

Abstract

Drug repositioning, the strategy of redirecting existing drugs to new therapeutic purposes, is pivotal in accelerating drug discovery. While many studies have engaged in modeling complex drug-disease associations, they often overlook the relevance between different node embeddings. Consequently, we propose a novel weighted local information augmented graph neural network model, termed DRAGNN, for drug repositioning. Specifically, DRAGNN firstly incorporates a graph attention mechanism to dynamically allocate attention coefficients to drug and disease heterogeneous nodes, enhancing the effectiveness of target node information collection. To prevent excessive embedding of information in a limited vector space, we omit self-node information aggregation, thereby emphasizing valuable heterogeneous and homogeneous information. Additionally, average pooling in neighbor information aggregation is introduced to enhance local information while maintaining simplicity. A multi-layer perceptron is then employed to generate the final association predictions. The model's effectiveness for drug repositioning is supported by a 10-times 10-fold cross-validation on three benchmark datasets. Further validation is provided through analysis of the predicted associations using multiple authoritative data sources, molecular docking experiments and drug-disease network analysis, laying a solid foundation for future drug discovery.

摘要

药物重定位,即将现有药物重新用于新的治疗目的的策略,是加速药物发现的关键。虽然许多研究都致力于模拟复杂的药物-疾病关联,但它们往往忽略了不同节点嵌入之间的相关性。因此,我们提出了一种新的加权局部信息增强图神经网络模型,称为 DRAGNN,用于药物重定位。具体来说,DRAGNN 首先采用图注意力机制,为药物和疾病异质节点动态分配注意力系数,增强目标节点信息采集的有效性。为了防止在有限的向量空间中过度嵌入信息,我们省略了自节点信息聚合,从而强调有价值的异质和同质信息。此外,在邻居信息聚合中引入平均池化,以增强局部信息的同时保持简单性。然后,使用多层感知机生成最终的关联预测。该模型在三个基准数据集上进行了 10 倍 10 折交叉验证,证明了其在药物重定位方面的有效性。进一步的验证是通过使用多个权威数据源、分子对接实验和药物-疾病网络分析来分析预测的关联来提供的,为未来的药物发现奠定了坚实的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60b2/10686358/df319b021645/bbad431f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验