Suppr超能文献

基于多视图学习与矩阵补全的药物重定位。

Drug repositioning based on multi-view learning with matrix completion.

机构信息

Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China.

Provincial Key Laboratory of Informational Service for Rural Area of Southwestern Hunan, Shaoyang University, Shaoyang, Hunan 422000, China.

出版信息

Brief Bioinform. 2022 May 13;23(3). doi: 10.1093/bib/bbac054.

Abstract

Determining drug indications is a critical part of the drug development process. However, traditional drug discovery is expensive and time-consuming. Drug repositioning aims to find potential indications for existing drugs, which is considered as an important alternative to the traditional drug discovery. In this article, we propose a multi-view learning with matrix completion (MLMC) method to predict the potential associations between drugs and diseases. Specifically, MLMC first learns the comprehensive similarity matrices from five drug similarity matrices and two disease similarity matrices based on the multi-view learning (ML) with Laplacian graph regularization, and updates the drug-disease association matrix simultaneously. Then, we introduce matrix completion (MC) to add some positive entries in original association matrix based on low-rank structure, and re-execute the multi-view learning algorithm for association prediction. At last, the prediction results of the above two operations are integrated as the final output. Evaluated by 10-fold cross-validation and de novo tests, MLMC achieves higher prediction accuracy than the current state-of-the-art methods. Moreover, case studies confirm the ability of our method in novel drug-disease association discovery. The codes of MLMC are available at https://github.com/BioinformaticsCSU/MLMC. Contact: jxwang@mail.csu.edu.cn.

摘要

确定药物适应证是药物开发过程中的一个关键部分。然而,传统的药物发现既昂贵又耗时。药物重定位旨在为现有药物寻找潜在的适应证,被认为是传统药物发现的重要替代方法。在本文中,我们提出了一种基于多视图学习和矩阵补全(MLMC)的方法来预测药物与疾病之间的潜在关联。具体来说,MLMC 首先基于拉普拉斯图正则化的多视图学习从五个药物相似性矩阵和两个疾病相似性矩阵中学习综合相似性矩阵,并同时更新药物-疾病关联矩阵。然后,我们引入矩阵补全(MC)来基于低秩结构在原始关联矩阵中添加一些正元素,并重新执行关联预测的多视图学习算法。最后,将上述两个操作的预测结果整合作为最终输出。通过 10 折交叉验证和从头测试评估,MLMC 比当前最先进的方法具有更高的预测准确性。此外,案例研究证实了我们的方法在新的药物-疾病关联发现方面的能力。MLMC 的代码可在 https://github.com/BioinformaticsCSU/MLMC 上获得。联系信息:jxwang@mail.csu.edu.cn

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验