Rejali Rasa, Farinacci Laëtitia, Coffey David, Broekhoven Rik, Gobeil Jeremie, Blanter Yaroslav M, Otte Sander
Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft 2628 CJ, The Netherlands.
ACS Nano. 2022 Jul 26;16(7):11251-11258. doi: 10.1021/acsnano.2c04574. Epub 2022 Jul 11.
Atomically engineered artificial lattices are a useful tool for simulating complex quantum phenomena, but have so far been limited to the study of Hamiltonians where electron-electron interactions do not play a role. However, it is precisely the regime in which these interactions do matter where computational times lend simulations a critical advantage over numerical methods. Here, we propose a platform for constructing artificial matter that relies on the confinement of field-emission resonances, a class of vacuum-localized discretized electronic states. We use atom manipulation of surface vacancies in a chlorine-terminated Cu(100) surface to reveal square patches of the underlying metal, thereby creating atomically precise potential wells that host particle-in-a-box modes. By adjusting the dimensions of the confining potential, we can access states with different quantum numbers, making these patches attractive candidates as quantum dots or artificial atoms. We demonstrate that the lifetime of electrons in these engineered states can be extended and tuned through modification of the confining potential, either via atomic assembly or by changing the tip-sample distance. We also demonstrate control over a finite range of state filling, a parameter which plays a key role in the evolution of quantum many-body states. We model the transport through the localized state to disentangle and quantify the lifetime-limiting processes, illustrating the critical dependence of the electron lifetime on the properties of the underlying bulk band structure. The interplay with the bulk bands gives rise to negative differential resistance, leading to possible applications in engineering custom atomic-scale resonant tunnelling diodes, which exhibit similar current-voltage characteristics.
原子工程人工晶格是模拟复杂量子现象的有用工具,但迄今为止仅限于研究电子-电子相互作用不起作用的哈密顿量。然而,正是在这些相互作用至关重要的 regime 中,计算时间使模拟相对于数值方法具有关键优势。在这里,我们提出了一个构建人工物质的平台,该平台依赖于场发射共振的限制,场发射共振是一类真空局部化的离散电子态。我们使用对氯端接的 Cu(100) 表面上的表面空位进行原子操纵,以揭示底层金属的方形斑块,从而创建容纳盒中粒子模式的原子精确势阱。通过调整限制势的尺寸,我们可以获得具有不同量子数的状态,使这些斑块成为作为量子点或人工原子的有吸引力的候选者。我们证明,通过原子组装或改变针尖-样品距离来修改限制势,可以延长和调整这些工程状态下电子的寿命。我们还展示了对有限范围状态填充的控制,状态填充是一个在量子多体状态演化中起关键作用的参数。我们对通过局域态的输运进行建模,以解开并量化寿命限制过程,说明了电子寿命对底层体带结构性质的关键依赖性。与体带的相互作用产生负微分电阻,从而在工程定制原子尺度共振隧穿二极管方面有潜在应用,这些二极管表现出类似的电流-电压特性。