Han Changnian, Zhang Peng, Bluestein Danny, Cong Guojing, Deng Yuefan
Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA.
Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11790, USA.
J Comput Phys. 2021 Feb 15;427. doi: 10.1016/j.jcp.2020.110053. Epub 2020 Dec 7.
We developed a novel data-driven Artificial Intelligence-enhanced Adaptive Time Stepping algorithm (AI-ATS) that can adapt timestep sizes to underlying biophysical dynamics. We demonstrated its values in solving a complex biophysical problem, at multiple spatiotemporal scales, that describes platelet dynamics in shear blood flow. In order to achieve a significant speedup of this computationally demanding problem, we integrated a framework of novel AI algorithms into the solution of the platelet dynamics equations. Our framework involves recurrent neural network-based autoencoders by the Long Short-Term Memory and the Gated Recurrent Units as the first step for memorizing the dynamic states in long-term dependencies for the input time series, followed by two fully-connected neural networks to optimize timestep sizes and step jumps. The computational efficiency of our AI-ATS is underscored by assessing the accuracy and speed of a multiscale simulation of the platelet with the standard time stepping algorithm (STS). By adapting the timestep size, our AI-ATS guides the omission of multiple redundant time steps without sacrificing significant accuracy of the dynamics. Compared to the STS, our AI-ATS achieved a reduction of 40% unnecessary calculations while bounding the errors of mechanical and thermodynamic properties to 3%.
我们开发了一种全新的数据驱动型人工智能增强自适应时间步长算法(AI-ATS),该算法能够使时间步长大小适应潜在的生物物理动力学。我们展示了其在解决一个复杂生物物理问题中的价值,该问题在多个时空尺度上描述了剪切血流中的血小板动力学。为了显著加速这个计算量巨大的问题,我们将一个新颖的人工智能算法框架集成到血小板动力学方程的求解中。我们的框架首先涉及基于长短期记忆和门控循环单元的递归神经网络自编码器,用于记忆输入时间序列中长时依赖关系的动态状态,随后是两个全连接神经网络,用于优化时间步长大小和步长跳跃。通过使用标准时间步长算法(STS)评估血小板多尺度模拟的准确性和速度,突出了我们的AI-ATS的计算效率。通过调整时间步长大小,我们的AI-ATS在不牺牲动力学显著准确性的情况下,引导省略多个冗余时间步。与STS相比,我们的AI-ATS减少了40%的不必要计算,同时将力学和热力学性质的误差限制在3%以内。