Zhang Peng, Zhang Na, Deng Yuefan, Bluestein Danny
Department of Biomedical Engineering, Stony Brook University, NY 11794, United States.
Department of Applied Mathematics and Statistics, Stony Brook University, NY 11794, United States.
J Comput Phys. 2015 Mar 1;284:668-686. doi: 10.1016/j.jcp.2015.01.004.
We developed a multiple time-stepping (MTS) algorithm for multiscale modeling of the dynamics of platelets flowing in viscous blood plasma. This MTS algorithm improves considerably the computational efficiency without significant loss of accuracy. This study of the dynamic properties of flowing platelets employs a combination of the dissipative particle dynamics (DPD) and the coarse-grained molecular dynamics (CGMD) methods to describe the dynamic microstructures of deformable platelets in response to extracellular flow-induced stresses. The disparate spatial scales between the two methods are handled by a hybrid force field interface. However, the disparity in temporal scales between the DPD and CGMD that requires time stepping at microseconds and nanoseconds respectively, represents a computational challenge that may become prohibitive. Classical MTS algorithms manage to improve computing efficiency by multi-stepping within DPD or CGMD for up to one order of magnitude of scale differential. In order to handle 3-4 orders of magnitude disparity in the temporal scales between DPD and CGMD, we introduce a new MTS scheme hybridizing DPD and CGMD by utilizing four different time stepping sizes. We advance the fluid system at the largest time step, the fluid-platelet interface at a middle timestep size, and the nonbonded and bonded potentials of the platelet structural system at two smallest timestep sizes. Additionally, we introduce parameters to study the relationship of accuracy versus computational complexities. The numerical experiments demonstrated 3000x reduction in computing time over standard MTS methods for solving the multiscale model. This MTS algorithm establishes a computationally feasible approach for solving a particle-based system at multiple scales for performing efficient multiscale simulations.
我们开发了一种多时间步长(MTS)算法,用于对在粘性血浆中流动的血小板动力学进行多尺度建模。这种MTS算法在不显著损失精度的情况下,大幅提高了计算效率。这项关于流动血小板动力学特性的研究采用了耗散粒子动力学(DPD)和粗粒化分子动力学(CGMD)方法的组合,以描述可变形血小板在细胞外流致应力作用下的动态微观结构。两种方法之间不同的空间尺度通过混合力场界面来处理。然而,DPD和CGMD之间时间尺度的差异(分别需要微秒和纳秒级的时间步长)带来了一个计算挑战,这可能变得令人望而却步。经典的MTS算法通过在DPD或CGMD内进行多步计算,将计算效率提高了一个数量级的尺度差异。为了处理DPD和CGMD之间时间尺度上3 - 4个数量级的差异,我们引入了一种新的MTS方案,通过使用四种不同的时间步长大小来混合DPD和CGMD。我们在最大时间步长推进流体系统,在中等时间步长推进流体 - 血小板界面,在两个最小时间步长推进血小板结构系统的非键合和键合势。此外,我们引入参数来研究精度与计算复杂度之间的关系。数值实验表明,与求解多尺度模型的标准MTS方法相比,计算时间减少了3000倍。这种MTS算法为解决基于粒子的多尺度系统以进行高效的多尺度模拟建立了一种计算上可行的方法。