Suppr超能文献

一种用于血浆中血小板流动高效多尺度建模的多时间步长算法。

A Multiple Time Stepping Algorithm for Efficient Multiscale Modeling of Platelets Flowing in Blood Plasma.

作者信息

Zhang Peng, Zhang Na, Deng Yuefan, Bluestein Danny

机构信息

Department of Biomedical Engineering, Stony Brook University, NY 11794, United States.

Department of Applied Mathematics and Statistics, Stony Brook University, NY 11794, United States.

出版信息

J Comput Phys. 2015 Mar 1;284:668-686. doi: 10.1016/j.jcp.2015.01.004.

Abstract

We developed a multiple time-stepping (MTS) algorithm for multiscale modeling of the dynamics of platelets flowing in viscous blood plasma. This MTS algorithm improves considerably the computational efficiency without significant loss of accuracy. This study of the dynamic properties of flowing platelets employs a combination of the dissipative particle dynamics (DPD) and the coarse-grained molecular dynamics (CGMD) methods to describe the dynamic microstructures of deformable platelets in response to extracellular flow-induced stresses. The disparate spatial scales between the two methods are handled by a hybrid force field interface. However, the disparity in temporal scales between the DPD and CGMD that requires time stepping at microseconds and nanoseconds respectively, represents a computational challenge that may become prohibitive. Classical MTS algorithms manage to improve computing efficiency by multi-stepping within DPD or CGMD for up to one order of magnitude of scale differential. In order to handle 3-4 orders of magnitude disparity in the temporal scales between DPD and CGMD, we introduce a new MTS scheme hybridizing DPD and CGMD by utilizing four different time stepping sizes. We advance the fluid system at the largest time step, the fluid-platelet interface at a middle timestep size, and the nonbonded and bonded potentials of the platelet structural system at two smallest timestep sizes. Additionally, we introduce parameters to study the relationship of accuracy versus computational complexities. The numerical experiments demonstrated 3000x reduction in computing time over standard MTS methods for solving the multiscale model. This MTS algorithm establishes a computationally feasible approach for solving a particle-based system at multiple scales for performing efficient multiscale simulations.

摘要

我们开发了一种多时间步长(MTS)算法,用于对在粘性血浆中流动的血小板动力学进行多尺度建模。这种MTS算法在不显著损失精度的情况下,大幅提高了计算效率。这项关于流动血小板动力学特性的研究采用了耗散粒子动力学(DPD)和粗粒化分子动力学(CGMD)方法的组合,以描述可变形血小板在细胞外流致应力作用下的动态微观结构。两种方法之间不同的空间尺度通过混合力场界面来处理。然而,DPD和CGMD之间时间尺度的差异(分别需要微秒和纳秒级的时间步长)带来了一个计算挑战,这可能变得令人望而却步。经典的MTS算法通过在DPD或CGMD内进行多步计算,将计算效率提高了一个数量级的尺度差异。为了处理DPD和CGMD之间时间尺度上3 - 4个数量级的差异,我们引入了一种新的MTS方案,通过使用四种不同的时间步长大小来混合DPD和CGMD。我们在最大时间步长推进流体系统,在中等时间步长推进流体 - 血小板界面,在两个最小时间步长推进血小板结构系统的非键合和键合势。此外,我们引入参数来研究精度与计算复杂度之间的关系。数值实验表明,与求解多尺度模型的标准MTS方法相比,计算时间减少了3000倍。这种MTS算法为解决基于粒子的多尺度系统以进行高效的多尺度模拟建立了一种计算上可行的方法。

相似文献

1
3
A predictive multiscale model for simulating flow-induced platelet activation: Correlating in silico results with in vitro results.
J Biomech. 2021 Mar 5;117:110275. doi: 10.1016/j.jbiomech.2021.110275. Epub 2021 Jan 25.
4
A Multiscale Model for Recruitment Aggregation of Platelets by Correlating with Results.
Cell Mol Bioeng. 2019 Aug;12(4):327-343. doi: 10.1007/s12195-019-00583-2. Epub 2019 Jul 9.
5
A multiscale biomechanical model of platelets: Correlating with in-vitro results.
J Biomech. 2017 Jan 4;50:26-33. doi: 10.1016/j.jbiomech.2016.11.019. Epub 2016 Nov 11.
6
A multiscale model for multiple platelet aggregation in shear flow.
Biomech Model Mechanobiol. 2021 Jun;20(3):1013-1030. doi: 10.1007/s10237-021-01428-6. Epub 2021 Mar 29.
7
Scalability Test of Multiscale Fluid-Platelet Model for Three Top Supercomputers.
Comput Phys Commun. 2016 Jul;204:132-140. doi: 10.1016/j.cpc.2016.03.019. Epub 2016 Apr 8.
8
Artificial Intelligence for Accelerating Time Integrations in Multiscale Modeling.
J Comput Phys. 2021 Feb 15;427. doi: 10.1016/j.jcp.2020.110053. Epub 2020 Dec 7.
9
Simulation of platelets suspension flowing through a stenosis model using a dissipative particle dynamics approach.
Ann Biomed Eng. 2013 Nov;41(11):2318-33. doi: 10.1007/s10439-013-0829-z. Epub 2013 May 22.
10
Construction of Multiscale Dissipative Particle Dynamics (DPD) Models from Other Coarse-Grained Models.
ACS Omega. 2024 Apr 2;9(15):17667-17680. doi: 10.1021/acsomega.4c01868. eCollection 2024 Apr 16.

引用本文的文献

1
A Computationally Efficient Viscoelastic Eukaryotic Cell Model.
Ann Biomed Eng. 2025 Jun 19. doi: 10.1007/s10439-025-03772-5.
3
[Research progress of coarse-grained molecular dynamics in drug carrier materials].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Aug 25;40(4):799-804. doi: 10.7507/1001-5515.202303008.
4
Artificial Intelligence for Accelerating Time Integrations in Multiscale Modeling.
J Comput Phys. 2021 Feb 15;427. doi: 10.1016/j.jcp.2020.110053. Epub 2020 Dec 7.
5
Machine Learning for Cardiovascular Biomechanics Modeling: Challenges and Beyond.
Ann Biomed Eng. 2022 Jun;50(6):615-627. doi: 10.1007/s10439-022-02967-4. Epub 2022 Apr 20.
6
Multiphysics and multiscale modeling of microthrombosis in COVID-19.
PLoS Comput Biol. 2022 Mar 7;18(3):e1009892. doi: 10.1371/journal.pcbi.1009892. eCollection 2022 Mar.
7
Online Machine Learning for Accelerating Molecular Dynamics Modeling of Cells.
Front Mol Biosci. 2022 Jan 27;8:812248. doi: 10.3389/fmolb.2021.812248. eCollection 2021.
8
Recent Advances in Computational Modeling of Biomechanics and Biorheology of Red Blood Cells in Diabetes.
Biomimetics (Basel). 2022 Jan 13;7(1):15. doi: 10.3390/biomimetics7010015.
10
A multiscale model for multiple platelet aggregation in shear flow.
Biomech Model Mechanobiol. 2021 Jun;20(3):1013-1030. doi: 10.1007/s10237-021-01428-6. Epub 2021 Mar 29.

本文引用的文献

2
Effect of Red Blood Cells on Platelet Activation and Thrombus Formation in Tortuous Arterioles.
Front Bioeng Biotechnol. 2013 Dec 3;1:18. doi: 10.3389/fbioe.2013.00018. eCollection 2013.
3
Parameterizing the Morse Potential for Coarse-Grained Modeling of Blood Plasma.
J Comput Phys. 2014 Jan 15;257(Pt A):726-736. doi: 10.1016/j.jcp.2013.09.040.
4
Simulation of platelets suspension flowing through a stenosis model using a dissipative particle dynamics approach.
Ann Biomed Eng. 2013 Nov;41(11):2318-33. doi: 10.1007/s10439-013-0829-z. Epub 2013 May 22.
5
Biomolecular simulation: a computational microscope for molecular biology.
Annu Rev Biophys. 2012;41:429-52. doi: 10.1146/annurev-biophys-042910-155245.
6
Multiscale modeling of platelet adhesion and thrombus growth.
Ann Biomed Eng. 2012 Nov;40(11):2345-54. doi: 10.1007/s10439-012-0558-8. Epub 2012 Apr 6.
7
8
Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology.
J Phys Condens Matter. 2011 Jun 15;23(23):233101. doi: 10.1088/0953-8984/23/23/233101. Epub 2011 May 25.
9
Modelling platelet-blood flow interaction using the subcellular element Langevin method.
J R Soc Interface. 2011 Dec 7;8(65):1760-71. doi: 10.1098/rsif.2011.0180. Epub 2011 May 18.
10
Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics.
J Comput Phys. 2011 May 31;230(10):3765-377. doi: 10.1016/j.jcp.2011.02.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验