Suppr超能文献

基于耗散粒子动力学和粗粒化分子动力学的血浆中流动血小板的多尺度粒子建模

Multiscale Particle-Based Modeling of Flowing Platelets in Blood Plasma Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics.

作者信息

Zhang Peng, Gao Chao, Zhang Na, Slepian Marvin J, Deng Yuefan, Bluestein Danny

机构信息

Department of Biomedical Engineering, Stony Brook University, NY 11794.

Department of Applied Mathematics and Statistics, Stony Brook University, NY 11794.

出版信息

Cell Mol Bioeng. 2014 Dec 1;7(4):552-574. doi: 10.1007/s12195-014-0356-5.

Abstract

We developed a multiscale particle-based model of platelets, to study the transport dynamics of shear stresses between the surrounding fluid and the platelet membrane. This model facilitates a more accurate prediction of the activation potential of platelets by viscous shear stresses - one of the major mechanisms leading to thrombus formation in cardiovascular diseases and in prosthetic cardiovascular devices. The interface of the model couples coarse-grained molecular dynamics (CGMD) with dissipative particle dynamics (DPD). The CGMD handles individual platelets while the DPD models the macroscopic transport of blood plasma in vessels. A hybrid force field is formulated for establishing a functional interface between the platelet membrane and the surrounding fluid, in which the microstructural changes of platelets may respond to the extracellular viscous shear stresses transferred to them. The interaction between the two systems preserves dynamic properties of the flowing platelets, such as the flipping motion. Using this multiscale particle-based approach, we have further studied the effects of the platelet elastic modulus by comparing the action of the flow-induced shear stresses on rigid and deformable platelet models. The results indicate that neglecting the platelet deformability may overestimate the stress on the platelet membrane, which in turn may lead to erroneous predictions of the platelet activation under viscous shear flow conditions. This particle-based fluid-structure interaction multiscale model offers for the first time a computationally feasible approach for simulating deformable platelets interacting with viscous blood flow, aimed at predicting flow induced platelet activation by using a highly resolved mapping of the stress distribution on the platelet membrane under dynamic flow conditions.

摘要

我们开发了一种基于多尺度粒子的血小板模型,以研究周围流体与血小板膜之间剪应力的传输动力学。该模型有助于更准确地预测血小板在粘性剪应力作用下的活化潜力,粘性剪应力是导致心血管疾病和人工心血管装置中血栓形成的主要机制之一。该模型的界面将粗粒度分子动力学(CGMD)与耗散粒子动力学(DPD)相结合。CGMD处理单个血小板,而DPD模拟血管中血浆的宏观传输。构建了一个混合力场,用于在血小板膜与周围流体之间建立功能界面,其中血小板的微观结构变化可能会对传递给它们的细胞外粘性剪应力作出反应。两个系统之间的相互作用保留了流动血小板的动态特性,如翻转运动。使用这种基于多尺度粒子的方法,我们通过比较流动诱导剪应力对刚性和可变形血小板模型的作用,进一步研究了血小板弹性模量的影响。结果表明,忽略血小板的可变形性可能会高估血小板膜上的应力,进而可能导致在粘性剪切流条件下对血小板活化的错误预测。这种基于粒子的流固相互作用多尺度模型首次提供了一种计算上可行的方法,用于模拟可变形血小板与粘性血流的相互作用,旨在通过在动态流动条件下对血小板膜上应力分布进行高度解析的映射来预测流动诱导的血小板活化。

相似文献

5
A multiscale model for multiple platelet aggregation in shear flow.用于剪切流中多个血小板聚集的多尺度模型。
Biomech Model Mechanobiol. 2021 Jun;20(3):1013-1030. doi: 10.1007/s10237-021-01428-6. Epub 2021 Mar 29.

引用本文的文献

5
Decoding thrombosis through code: a review of computational models.解码血栓形成的密码:计算模型综述。
J Thromb Haemost. 2024 Jan;22(1):35-47. doi: 10.1016/j.jtha.2023.08.021. Epub 2023 Aug 30.

本文引用的文献

2
Computational biorheology of human blood flow in health and disease.健康与疾病状态下人体血流的计算生物流变学
Ann Biomed Eng. 2014 Feb;42(2):368-87. doi: 10.1007/s10439-013-0922-3. Epub 2013 Oct 12.
5
On developing coarse-grained models for biomolecular simulation: a review.开发生物分子模拟的粗粒度模型:综述。
Phys Chem Chem Phys. 2012 Sep 28;14(36):12423-30. doi: 10.1039/c2cp40934h. Epub 2012 Jun 8.
9
Multiscale modeling of red blood cell mechanics and blood flow in malaria.疟疾中红细胞力学和血流的多尺度建模。
PLoS Comput Biol. 2011 Dec;7(12):e1002270. doi: 10.1371/journal.pcbi.1002270. Epub 2011 Dec 1.
10
Predicting human blood viscosity in silico.计算机模拟预测人体血液黏度。
Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11772-7. doi: 10.1073/pnas.1101210108. Epub 2011 Jul 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验