Suppr超能文献

基于堆叠卷积和学生重排网络的鲁棒知识图谱补全

Robust Knowledge Graph Completion with Stacked Convolutions and a Student Re-Ranking Network.

作者信息

Lovelace Justin, Newman-Griffis Denis, Vashishth Shikhar, Lehman Jill Fain, Rosé Carolyn Penstein

机构信息

Language Technologies Institute, Carnegie Mellon University, USA.

Department of Biomedical Informatics, University of Pittsburgh, USA.

出版信息

Proc Conf Assoc Comput Linguist Meet. 2021 Aug;2021:1016-1029. doi: 10.18653/v1/2021.acl-long.82.

Abstract

Knowledge Graph (KG) completion research usually focuses on densely connected benchmark datasets that are not representative of real KGs. We curate two KG datasets that include biomedical and encyclopedic knowledge and use an existing commonsense KG dataset to explore KG completion in the more realistic setting where dense connectivity is not guaranteed. We develop a deep convolutional network that utilizes textual entity representations and demonstrate that our model outperforms recent KG completion methods in this challenging setting. We find that our model's performance improvements stem primarily from its robustness to sparsity. We then distill the knowledge from the convolutional network into a student network that re-ranks promising candidate entities. This re-ranking stage leads to further improvements in performance and demonstrates the effectiveness of entity re-ranking for KG completion.

摘要

知识图谱(KG)补全研究通常集中在密集连接的基准数据集上,这些数据集并不代表真实的知识图谱。我们精心策划了两个包含生物医学和百科知识的知识图谱数据集,并使用现有的常识知识图谱数据集,在不保证密集连接性的更现实场景中探索知识图谱补全。我们开发了一种利用文本实体表示的深度卷积网络,并证明我们的模型在这一具有挑战性的场景中优于近期的知识图谱补全方法。我们发现,我们模型的性能提升主要源于其对稀疏性的鲁棒性。然后,我们将卷积网络中的知识提炼到一个学生网络中,该网络对有前景的候选实体进行重新排序。这个重新排序阶段带来了性能的进一步提升,并证明了实体重新排序对知识图谱补全的有效性。

相似文献

3
Text-Graph Enhanced Knowledge Graph Representation Learning.文本-图增强的知识图谱表示学习
Front Artif Intell. 2021 Aug 17;4:697856. doi: 10.3389/frai.2021.697856. eCollection 2021.
6
CNN-based ranking for biomedical entity normalization.基于卷积神经网络的生物医学实体标准化排序
BMC Bioinformatics. 2017 Oct 3;18(Suppl 11):385. doi: 10.1186/s12859-017-1805-7.
8
Adaptive Prototype Interaction Network for Few-Shot Knowledge Graph Completion.用于少样本知识图谱补全的自适应原型交互网络
IEEE Trans Neural Netw Learn Syst. 2024 Nov;35(11):15237-15250. doi: 10.1109/TNNLS.2023.3283545. Epub 2024 Oct 29.
9
Metric learning with spectral graph convolutions on brain connectivity networks.基于脑连接网络的谱图卷积的度量学习。
Neuroimage. 2018 Apr 1;169:431-442. doi: 10.1016/j.neuroimage.2017.12.052. Epub 2017 Dec 24.

本文引用的文献

2
Convolutional Networks with Dense Connectivity.具有密集连接的卷积网络。
IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):8704-8716. doi: 10.1109/TPAMI.2019.2918284. Epub 2022 Nov 7.
4
Auditing the semantic completeness of SNOMED CT using formal concept analysis.使用形式概念分析审核SNOMED CT的语义完整性。
J Am Med Inform Assoc. 2009 Jan-Feb;16(1):89-102. doi: 10.1197/jamia.M2541. Epub 2008 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验