Suppr超能文献

通过交替生长-蚀刻化学气相沉积法制备的具有高光致发光量子产率的缺陷抑制亚毫米级WS单晶。

Defect-suppressed submillimeter-scale WS single crystals with high photoluminescence quantum yields by alternate-growth-etching CVD.

作者信息

Xin Xing, Zhang Yanmei, Chen Jiamei, Chen Mao-Lin, Xin Wei, Ding Mengfan, Bao Youzhe, Liu Weizhen, Xu Haiyang, Liu Yichun

机构信息

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun 130024, China.

State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Optoelectronics, Shanxi University, Taiyuan 03006, China.

出版信息

Mater Horiz. 2022 Aug 30;9(9):2416-2424. doi: 10.1039/d2mh00721e.

Abstract

Defects, such as uncontrollable vacancies, will intensively degrade the material properties and device performance of CVD-grown transition metal dichalcogenides (TMDs). Although vacancies can be repaired by some post-processing measures, these treatments are usually time-consuming, complicated and may introduce uncontrollable chemical contaminants into TMDs. How to efficiently suppress the uncontrollable defects during CVD growth and acquire intrinsic high-quality CVD-grown TMDs without any after-treatment remains a critical challenge, and has not yet been well resolved. Here, an alternate-growth-etching (AGE) CVD method was demonstrated to fabricate defect-suppressed submillimeter-scale monolayer WS single crystals. Compared with normal CVD, the grain size of the as-grown WS can be enlarged by 4-5 times (∼520 μm) and the growth rate of ∼14.4 μm min is also at a high level compared to reported results. Moreover, AGE-CVD can efficiently suppress atomic vacancies in WS. In every growth-etching cycle, the etching of WS occurs preferentially at the defective sites, which will be healed at the following growth stage. As a result, WS monolayers obtained by AGE-CVD possess higher crystal quality, carrier mobility (8.3 cm V s) and PL quantum yield (QY, 52.6%) than those by normal CVD. In particular, such a PL QY is the highest value ever reported for CVD-grown TMDs without any after-treatment, and is even comparable to the values of mechanically exfoliated samples. This AGE-CVD method is also appropriate for the synthesis of other high-quality TMD single crystals on a large-scale.

摘要

诸如不可控空位之类的缺陷会严重降低化学气相沉积(CVD)生长的过渡金属二硫属化物(TMD)的材料性能和器件性能。尽管可以通过一些后处理措施修复空位,但这些处理通常耗时、复杂,并且可能会将不可控的化学污染物引入TMD中。如何在CVD生长过程中有效抑制不可控缺陷并获得无需任何后处理的本征高质量CVD生长的TMD,仍然是一个关键挑战,尚未得到很好的解决。在此,展示了一种交替生长蚀刻(AGE)CVD方法来制备缺陷抑制的亚毫米级单层WS单晶。与常规CVD相比,生长的WS的晶粒尺寸可以扩大4至5倍(约520μm),并且与报道的结果相比,约1​​4.4μm/min的生长速率也处于较高水平。此外,AGE-CVD可以有效抑制WS中的原子空位。在每个生长-蚀刻循环中,WS的蚀刻优先发生在缺陷部位,该缺陷部位将在随后的生长阶段愈合。结果,通过AGE-CVD获得的WS单层比通过常规CVD获得的具有更高的晶体质量、载流子迁移率(8.3 cm² V⁻¹ s⁻¹)和光致发光(PL)量子产率(QY,52.6%)。特别地,这样的PL QY是未经任何后处理的CVD生长的TMD所报道的最高值,甚至与机械剥离样品的值相当。这种AGE-CVD方法也适用于大规模合成其他高质量的TMD单晶。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验