National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States.
Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
J Phys Chem Lett. 2022 Jul 21;13(28):6549-6558. doi: 10.1021/acs.jpclett.2c01777. Epub 2022 Jul 13.
Oxygen is an integral component of proteins but remains sparsely studied because its only NMR active isotope, O, has low sensitivity, low resolution, and large quadrupolar couplings. These issues are addressed here with efficient isotopic labeling, high magnetic fields, fast sample spinning, and H detection in conjunction with multidimensional experiments to observe oxygen sites specific to each amino acid residue. Notably, cross-polarization at high sample spinning frequencies provides efficient C ↔ O polarization transfer. The use of O for initial polarization is found to provide better sensitivity per unit time compared to H. Sharp isotropic O peaks are obtained by using a low-power multiple-quantum sequence, which in turn allows extraction of quadrupolar parameters for each oxygen site. Finally, the potential to determine sequential assignments and long-range distance restraints is demonstrated by using 3D H/C/O experiments, suggesting that such methods can become an essential tool for biomolecular structure determination.
氧是蛋白质的组成部分,但研究较少,因为其唯一的 NMR 活性同位素 O 灵敏度低、分辨率低且四极耦合大。通过高效同位素标记、高磁场、快速样品旋转以及 H 检测与多维实验相结合,解决了这些问题,从而可以观察到每个氨基酸残基特定的氧位。值得注意的是,在高样品旋转频率下的交叉极化提供了有效的 C → O 极化转移。与 H 相比,发现使用 O 进行初始极化可在单位时间内提供更好的灵敏度。通过使用低功率多量子序列获得尖锐的各向同性 O 峰,进而可以为每个氧位提取四极参数。最后,通过使用 3D H/C/O 实验证明了确定序列分配和远程距离约束的潜力,这表明此类方法可以成为生物分子结构测定的重要工具。