Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
Sci Rep. 2022 Jul 13;12(1):11948. doi: 10.1038/s41598-022-16144-z.
Some surgical patients require an arterial or central venous catheterization intraoperatively. This decision relied solely on the experience of individual anesthesiologists; however, these decisions are not easy for clinicians who are in an emergency or inexperienced. Therefore, applying recent artificial intelligence techniques to automatically extractable data from electronic medical record (EMR) could create a very clinically useful model in this situation. This study aimed to develop a model that is easy to apply in real clinical settings by implementing a prediction model for the preoperative decision to insert an arterial and central venous catheter and that can be automatically linked to the EMR. We collected and retrospectively analyzed data from 66,522 patients, > 18 years of age, who underwent non-cardiac surgeries from March 2019 to April 2021 at the single tertiary medical center. Data included demographics, pre-operative laboratory tests, surgical information, and catheterization information. When compared with other machine learning methods, the DNN model showed the best predictive performance in terms of the area under receiver operating characteristic curve and area under the precision-recall curve. Operation code information accounted for the largest portion of the prediction. This can be applied to clinical fields using operation code and minimal preoperative clinical information.
一些手术患者需要在手术期间进行动脉或中心静脉置管。这一决策完全依赖于麻醉医师的经验;然而,对于处于紧急情况或缺乏经验的临床医生来说,这些决策并不容易。因此,将最近的人工智能技术应用于电子病历(EMR)中可自动提取的数据,可以在这种情况下创建一个非常实用的临床模型。本研究旨在通过实施动脉和中心静脉置管术前决策的预测模型来开发一种易于在实际临床环境中应用的模型,该模型可以自动与 EMR 相关联。我们收集并回顾性分析了 2019 年 3 月至 2021 年 4 月在单一三级医疗中心接受非心脏手术的 66522 名年龄>18 岁患者的数据。数据包括人口统计学信息、术前实验室检查、手术信息和置管信息。与其他机器学习方法相比,DNN 模型在接受者操作特征曲线下面积和精度召回曲线下面积方面表现出了最佳的预测性能。手术代码信息占预测的最大部分。这可以通过使用手术代码和最小化的术前临床信息应用于临床领域。