Suppr超能文献

麻醉医生批判性评估机器学习研究指南:一篇叙述性综述

The anesthesiologist's guide to critically assessing machine learning research: a narrative review.

作者信息

Ocampo Osorio Felipe, Alzate-Ricaurte Sergio, Mejia Vallecilla Tomas Eduardo, Cruz-Suarez Gustavo Adolfo

机构信息

Unidad de Inteligencia Artificial, Fundación Valle del Lili, Cra 98 Num.18-49, Cali, 760032, Valle del Cauca, Colombia.

Departamento de Salud Pública y Medicina Comunitaria, Universidad Icesi, Cali, 760000, Valle del Cauca, Colombia.

出版信息

BMC Anesthesiol. 2024 Dec 18;24(1):452. doi: 10.1186/s12871-024-02840-y.

Abstract

Artificial Intelligence (AI), especially Machine Learning (ML), has developed systems capable of performing tasks that require human intelligence. In anesthesiology and other medical fields, AI applications can improve the precision and efficiency of daily clinical practice, and can also facilitate a personalized approach to patient care, which can lead to improved outcomes and quality of care. ML has been successfully applied in various settings of daily anesthesiology practice, such as predicting acute kidney injury, optimizing anesthetic doses, and managing postoperative nausea and vomiting. The critical evaluation of ML models in healthcare is crucial to assess their validity, safety, and clinical applicability. Evaluation metrics allow an objective statistical assessment of model performance. Tools such as Shapley Values (SHAP) help interpret how individual variables contribute to model predictions. Transparency in reporting is key in maintaining trust in these technologies and to ensure their use follows ethical principles, aiming to reduce safety concerns while also benefiting patients. Understanding evaluation metrics is essential, as they provide detailed information on model performance and their ability to discriminate between individual class rates. This article offers a comprehensive framework in assessing the validity, applicability, and limitations of models, guiding responsible and effective integration of ML technologies into clinical practice. A balance between innovation, patient safety and ethical considerations must be pursued.

摘要

人工智能(AI),尤其是机器学习(ML),已经开发出能够执行需要人类智能的任务的系统。在麻醉学和其他医学领域,人工智能应用可以提高日常临床实践的精度和效率,还可以促进个性化的患者护理方法,从而改善治疗效果和护理质量。机器学习已成功应用于日常麻醉实践的各种场景,如预测急性肾损伤、优化麻醉剂量以及管理术后恶心和呕吐。对医疗保健中的机器学习模型进行批判性评估对于评估其有效性、安全性和临床适用性至关重要。评估指标允许对模型性能进行客观的统计评估。诸如沙普利值(SHAP)之类的工具有助于解释各个变量如何对模型预测做出贡献。报告的透明度是维持对这些技术的信任以及确保其使用遵循道德原则的关键,旨在减少安全担忧同时也使患者受益。理解评估指标至关重要,因为它们提供了有关模型性能及其区分个体分类率能力的详细信息。本文提供了一个全面的框架来评估模型的有效性、适用性和局限性,指导将机器学习技术负责任且有效地整合到临床实践中。必须在创新、患者安全和伦理考量之间寻求平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff0f/11654216/5d602544a2d3/12871_2024_2840_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验