Suppr超能文献

开发和验证用于预测术后住院死亡率的深度神经网络模型。

Development and Validation of a Deep Neural Network Model for Prediction of Postoperative In-hospital Mortality.

机构信息

From the Department of Anesthesiology and Perioperative Care (C.K.L., M.C.) Department of Computer Sciences (C.K.L., P.B.) Department of Bioengineering (M.C.), University of California Irvine, Irvine, California Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, California (I.H., E.G., M.C.).

出版信息

Anesthesiology. 2018 Oct;129(4):649-662. doi: 10.1097/ALN.0000000000002186.

Abstract

WHAT WE ALREADY KNOW ABOUT THIS TOPIC

WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: The authors tested the hypothesis that deep neural networks trained on intraoperative features can predict postoperative in-hospital mortality.

METHODS

The data used to train and validate the algorithm consists of 59,985 patients with 87 features extracted at the end of surgery. Feed-forward networks with a logistic output were trained using stochastic gradient descent with momentum. The deep neural networks were trained on 80% of the data, with 20% reserved for testing. The authors assessed improvement of the deep neural network by adding American Society of Anesthesiologists (ASA) Physical Status Classification and robustness of the deep neural network to a reduced feature set. The networks were then compared to ASA Physical Status, logistic regression, and other published clinical scores including the Surgical Apgar, Preoperative Score to Predict Postoperative Mortality, Risk Quantification Index, and the Risk Stratification Index.

RESULTS

In-hospital mortality in the training and test sets were 0.81% and 0.73%. The deep neural network with a reduced feature set and ASA Physical Status classification had the highest area under the receiver operating characteristics curve, 0.91 (95% CI, 0.88 to 0.93). The highest logistic regression area under the curve was found with a reduced feature set and ASA Physical Status (0.90, 95% CI, 0.87 to 0.93). The Risk Stratification Index had the highest area under the receiver operating characteristics curve, at 0.97 (95% CI, 0.94 to 0.99).

CONCLUSIONS

Deep neural networks can predict in-hospital mortality based on automatically extractable intraoperative data, but are not (yet) superior to existing methods.

摘要

背景

作者测试了一个假设,即基于术中特征训练的深度神经网络可以预测术后住院死亡率。

方法

用于训练和验证算法的数据包括 59985 名患者,这些患者在手术结束时提取了 87 个特征。使用具有逻辑输出的前馈网络,通过具有动量的随机梯度下降进行训练。深度神经网络在 80%的数据上进行训练,20%的数据保留用于测试。作者通过添加美国麻醉师协会(ASA)身体状况分类和深度神经网络对简化特征集的稳健性来评估深度神经网络的改进。然后将这些网络与 ASA 身体状况、逻辑回归以及其他已发表的临床评分(包括手术阿普加评分、预测术后死亡率的术前评分、风险量化指数和风险分层指数)进行比较。

结果

在训练集和测试集中,院内死亡率分别为 0.81%和 0.73%。具有简化特征集和 ASA 身体状况分类的深度神经网络的受试者工作特征曲线下面积最高,为 0.91(95%置信区间,0.88 至 0.93)。具有简化特征集和 ASA 身体状况的逻辑回归曲线下面积最高,为 0.90(95%置信区间,0.87 至 0.93)。风险分层指数的受试者工作特征曲线下面积最高,为 0.97(95%置信区间,0.94 至 0.99)。

结论

深度神经网络可以根据自动提取的术中数据预测院内死亡率,但目前并不(优于)现有方法。

相似文献

4
Deep-learning model for predicting 30-day postoperative mortality.深度学习模型预测 30 天术后死亡率。
Br J Anaesth. 2019 Nov;123(5):688-695. doi: 10.1016/j.bja.2019.07.025. Epub 2019 Sep 23.
9
New surgical scoring system to predict postoperative mortality.预测术后死亡率的新手术评分系统。
J Anesth. 2017 Apr;31(2):198-205. doi: 10.1007/s00540-016-2290-2. Epub 2016 Dec 19.

引用本文的文献

5
Big data in anaesthesia: a narrative, nonsystematic review.麻醉领域的大数据:一项叙述性非系统性综述
Eur J Anaesthesiol Intensive Care. 2023 Aug 4;2(5):e0032. doi: 10.1097/EA9.0000000000000032. eCollection 2023 Oct.

本文引用的文献

2
$\mathtt {Deepr}$: A Convolutional Net for Medical Records.Deepr:一种用于医疗记录的卷积网络。
IEEE J Biomed Health Inform. 2017 Jan;21(1):22-30. doi: 10.1109/JBHI.2016.2633963. Epub 2016 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验