Suppr超能文献

氟吡菌酰胺在植物寄生线虫中的作用模式。

Mode of action of fluopyram in plant-parasitic nematodes.

机构信息

Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany.

Research and Development, CropScience Division, Bayer AG, Alfred-Nobel-Str.50, 40789, Monheim am Rhein, Germany.

出版信息

Sci Rep. 2022 Jul 13;12(1):11954. doi: 10.1038/s41598-022-15782-7.

Abstract

Plant-parasitic nematodes (PPN) are responsible for severe yield losses in crop production. Management is challenging as effective and safe means are rare. Recently, it has been discovered that the succinate dehydrogenase (SDH) inhibitor fluopyram is highly effective against PPN while accompanying an excellent safety profile. Here we show that fluopyram is a potent inhibitor of SDH in nematodes but not in mammals, insects and earthworm, explaining the selectivity on molecular level. As a consequence of SDH inhibition, fluopyram impairs ATP generation and causes paralysis in PPN and Caenorhabditis elegans. Interestingly, efficacy differences of fluopyram amongst PPN species can be observed. Permanent exposure to micromolar to nanomolar amounts of fluopyram prevents Meloidogyne spp. and Heterodera schachtii infection and their development at the root. Preincubation of Meloidogyne incognita J2 with fluopyram followed by a recovery period effectively reduces gall formation. However, the same procedure does not inhibit H. schachtii infection and development. Sequence comparison of sites relevant for ligand binding identified amino acid differences in SDHC which likely mediate selectivity, coincidently revealing a unique amino acid difference within SDHC conserved among Heterodera spp. Docking and C. elegans mutant studies suggest that this minute difference mediates altered sensitivity of H. schachtii towards fluopyram.

摘要

植物寄生线虫(PPN)是导致作物减产的主要原因。由于有效的防治方法很少,因此管理具有挑战性。最近,人们发现琥珀酸脱氢酶(SDH)抑制剂氟吡菌胺对线虫具有高效作用,同时具有良好的安全性。在这里,我们证明氟吡菌胺是线虫中 SDH 的有效抑制剂,但对哺乳动物、昆虫和蚯蚓没有作用,从分子水平解释了其选择性。由于 SDH 抑制,氟吡菌胺会破坏 ATP 的产生,并导致线虫和秀丽隐杆线虫瘫痪。有趣的是,氟吡菌胺对线虫物种的功效存在差异。长期接触微摩尔至纳摩尔数量的氟吡菌胺可以防止根结线虫属和马铃薯金线虫的感染及其在根部的发育。用氟吡菌胺预孵育南方根结线虫 J2,然后恢复一段时间,可有效减少根结的形成。然而,同样的程序并不能抑制马铃薯金线虫的感染和发育。对线虫 SDHC 相关配体结合位点的序列比较确定了 SDHC 中氨基酸差异,这些差异可能介导了选择性,巧合的是,在马铃薯金线虫属中发现了 SDHC 中的一个独特氨基酸差异。对接和秀丽隐杆线虫突变体研究表明,这种微小差异导致马铃薯金线虫对线虫胺的敏感性发生改变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be23/9279378/cef29a627376/41598_2022_15782_Fig1_HTML.jpg

相似文献

1
Mode of action of fluopyram in plant-parasitic nematodes.
Sci Rep. 2022 Jul 13;12(1):11954. doi: 10.1038/s41598-022-15782-7.
3
Wheat Root Protection From Cereal Cyst Nematode () by Fluopyram Seed Treatment.
Plant Dis. 2021 Sep;105(9):2466-2471. doi: 10.1094/PDIS-08-20-1851-RE. Epub 2021 Oct 24.
5
Effect of Fluopyram on on Corn in the Field and In Vitro.
Plant Dis. 2024 Feb;108(2):342-347. doi: 10.1094/PDIS-04-23-0725-RE. Epub 2024 Feb 9.
6
Oxidative stress, intestinal damage, and cell apoptosis: Toxicity induced by fluopyram in Caenorhabditis elegans.
Chemosphere. 2022 Jan;286(Pt 3):131830. doi: 10.1016/j.chemosphere.2021.131830. Epub 2021 Aug 9.
7
The distinct profiles of the inhibitory effects of fluensulfone, abamectin, aldicarb and fluopyram on Globodera pallida hatching.
Pestic Biochem Physiol. 2020 May;165:104541. doi: 10.1016/j.pestbp.2020.02.007. Epub 2020 Feb 5.
9
Short-Term Effects of Sublethal Doses of Nematicides on .
Phytopathology. 2019 Sep;109(9):1605-1613. doi: 10.1094/PHYTO-11-18-0420-R. Epub 2019 Jul 19.

引用本文的文献

2
A proof-of-concept experimental-theoretical model to predict pesticide resistance evolution.
Heredity (Edinb). 2025 Jul 23. doi: 10.1038/s41437-025-00781-x.
3
Mutations of the Electron Transport Chain Affect Lifespan and ROS Levels in .
Antioxidants (Basel). 2025 Jan 10;14(1):76. doi: 10.3390/antiox14010076.
6
Design, synthesis, and nematicidal activity of novel 1,2,4-oxadiazole derivatives containing amide fragments.
Mol Divers. 2025 Jun;29(3):2293-2304. doi: 10.1007/s11030-024-10992-9. Epub 2024 Sep 26.
7
Fungicide-albumin interactions: unraveling the complex relationship-a comprehensive review.
Biophys Rev. 2024 May 4;16(4):417-439. doi: 10.1007/s12551-024-01190-w. eCollection 2024 Aug.
9
Potential of fruit seeds: Exploring bioactives and ensuring food safety for sustainable management of food waste.
Food Chem X. 2024 Aug 6;23:101718. doi: 10.1016/j.fochx.2024.101718. eCollection 2024 Oct 30.
10
Evaluation of nematicides for management in sweetpotato.
J Nematol. 2024 Aug 24;56(1):20240033. doi: 10.2478/jofnem-2024-0033. eCollection 2024 Mar.

本文引用的文献

3
A Review of Methods to Determine Viability, Vitality, and Metabolic Rates in Microbiology.
Front Microbiol. 2020 Nov 17;11:547458. doi: 10.3389/fmicb.2020.547458. eCollection 2020.
4
UniProt: the universal protein knowledgebase in 2021.
Nucleic Acids Res. 2021 Jan 8;49(D1):D480-D489. doi: 10.1093/nar/gkaa1100.
5
WormBase: a modern Model Organism Information Resource.
Nucleic Acids Res. 2020 Jan 8;48(D1):D762-D767. doi: 10.1093/nar/gkz920.
6
Short-Term Effects of Sublethal Doses of Nematicides on .
Phytopathology. 2019 Sep;109(9):1605-1613. doi: 10.1094/PHYTO-11-18-0420-R. Epub 2019 Jul 19.
8
Potential Impact of Fluopyram on the Frequency of the D123E Mutation in Alternaria solani.
Plant Dis. 2018 Mar;102(3):656-665. doi: 10.1094/PDIS-06-17-0853-RE. Epub 2018 Jan 31.
9
Fluopyram Sensitivity and Functional Characterization of SdhB in the Species Complex Causing Soybean Sudden Death Syndrome.
Front Microbiol. 2018 Oct 1;9:2335. doi: 10.3389/fmicb.2018.02335. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验